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I. It is well known that in electrodynamies the potentials
giving rise to the same expression for & field strength are ne-
cessarily related by some gauge iransformation. Generally speak-
ing, for non-Abelian gauge theories the situation is somewhat
different since there are pntent?nls not related by a gauge trans-
formation but leading to the equal quantity of the field strength
in the entire space. Wu and Yang were eﬁidantlﬁ the first who
considered the example of such a kinﬂ1; Not long after several
analogous examples have been uuppliaﬁ2"5 and the necessary con-
dition of the existence of such ambiguities has been ﬂeriveds'?

In this paper it is Etudlﬂd a8 class of fields wherein each
potential ’ﬁ carrﬂupondn to auah & potential-double éﬁ; that
the equality ),uu H)' Ffﬂ“ (8) is fulfdlled but there is no
cauge transformation relating a'!; and 3; . For the fields
under consideration one succeeds in finding the explicit form
of the potentials-doubles.

The paper covers the following:

Tn paragragh 2 the equation is derived which ie satisfied
by potentials-doubles, and its solution is found. Then, it ig
proved that the potentials obtained are not redusible to each
other by & gauge transformation. :

In ﬁu:agraph 3 fhé asymptotic behavior of the potentials-
doubles is studied. ;

In paragraph 4 it is proved that the non-unique potentials
ﬁ? and 3: can satisfy the non-homogeneous Yang-lillls equa-
tions only with different extermal sources, In particular, in

the cless of fields in question no pctentiala—daublas gimulta-

neously natiafjing the homngeneaus Ehng—Mills equatians ax_sf
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And f:l.nally, note that all the calculations are carried
out for the gauge group FU (2),

2+ The general form of the "spherical-symmetrical” poten-

tlals can be repreaanted as follows:
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Here A= /2, 2= (x%) , and f!»” iy, N are the dimension- -

less arbitrary functions of 2 . The field strengths expressed

. through 4y, fl jz; are written in the following form:
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The touch denotes differentiation with respect toc % .

Then let us write down the general form analogous fo expres—
sion (1) for the potential-double 5'?{ f;, 22, %5 )y by using
other functions 4, %, $s « Our task is tc- express g1, ﬁ;,ﬁ;
via 4,, 4;, hy , From the equelity condition Fiy {"-*U F— (8)
Hence, we obtain the following set of differential lequ&ticna for
the functions ¢,,%: 9:°

29,95~ 29, -—-2&,,&3'4&;_ (a)
2 Fa 95~ Js +$:2:‘2&3’E3 ""{3 fé;z (b) (3)
Fege-gr byt by e (c)
The obvious solution of this system is ¢, = fZ‘; » here
4

AL = 1,2,3. However, as it will be shown below, this set of
differential equations can be reduced to that of algebraic equa-
tions and has the solution differing Prom the tpivial, fio £ind
this solution, let ﬁs try to exclu;ie 4y from eqs.(3a) and
(3b). In this case the derivatives of the umm-c-wn funetions qg';
and 5; are involved only in the combinations 3;¢§;+£giag;*a§;
but this expression is exactly equel to the known quantity
2&11&;*2&&; '14; , what follows from eq,(3c)., Thus, all the
derivatives of unknown functions are absent in the result, and
we obtain ¢, as a function of £, , Ay, é:,_ . After that, sub-
stituting this expression for [ .in eq.{3c),2we get the algeb-

raic quadratic equation for G2

[ he by r.zj f)+?.& ;Hz,a (A, ;z,:]

2hi< Zhhs Ay gy (hfehimhe) = L

It follows from eq.{a}} that we have two roots one of which 9,=
fr._,_ . The second, nontrivial root can be found if one divides
the left-hand side of eq.(4) by { g, -4, ). The result has 1ue

fairly. compact form:

e e -

where A, .4, . %5 are the same as those in eq.(E} When &,
ims found, 3.4 and 45 are expreaaed in a trivisl fashion from
Eq-"(3)'. :
; “a ) -3
Now there is necessity to prove thati Ay {’i.u" and 8; (f-c/l
do not related by a gauge transformation. It is unneczasary 7o
use the general expression (5) for this, it suffices %o can_:aider

s particular case. For example, let 4,=4,=0 :," A, is an ar-




bitrery function. Then, from 3{:{3«{5) and (6) one finds that

g}’ Y g,=1, g; = 0. is both ;g (h,) and §; (ﬁ-‘.{_ﬁ are "spher-
ical-symmetric" potentials, they can be related only ‘;:n:f a Epﬂif‘r—
ical-gymmetric gauge transformation with the matrix & = Ewnﬁz .
here & are the usual Pauli métrices, Let us assume that there
exists such a function /(%) by means of which one could make

a transition from 4, ‘%o gz provided the following equalities

are fulfilled:

A, cos 2}45";{& 2 =k,
JI{II sin 2)(4 Sin J‘-)f = f’ " (6}

Sz =0
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It is easy to see that the set (6) is unsolved and, thus,

@ [ 4
#;  end 8;
formation. In the general case of arbitrary A, , there are no

and B; ()

cannot be rednced to each other under a gauge trans-
ceuge transformations relating Jf-a:’ﬁ ) . Of course,
exceptions are possible, For example, the quadratic equation (4)
can 'tre degenerated, i.e. there exists the unique solution ?f: .
And in this case there is also the gauge ftransformation relatlng
two roots, This is the identical transformation with & = 1.

The condition of the existence of the unique aa:}.utinn of

can be written in the form:

eq.(4) ¢g. =4,

Hiw Hy )(2h, 1) ¢ FH, 2 ‘fgé B (7)

So, for example, for k,=zh;=0 A, ig an arbitrary fune-
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tential #; oW,

tiom, the condition (7) is satisfied and, as readily see, we have

the unique solution from eqe.(5) and (3): %e=ha, 4,59 o

3, It is interesting to know in what extanti the pa‘tén‘tialsa-
doubles differ at T @ , In the study of this question we con-
fine ourselves to the systemse with the finite total energy. To

this end, it suffices that A+ const (7+ o) _ Daking account of

this assumption, one writes the solution of (5} in the form: G2 =
— ?J_k f #1‘ —t ¥ d”ﬁ
.3 J"li. -J-H Cl:"!
ty in calcul&ticnag the conditien hy=0

~ A where A = - 0,(t+ =), For simplici-

is imposed on the po-
. Then the solutions of eqs.(3) and (5) at z~>eo
take the form:
Poimmil ) g e Tk 95—~ —hs3 (8)

But the potentlals are not comparable in such & form siﬁce tﬁey
are . wrltten in differential gauges. In orﬁer to compare A; t"r{ /
and 3; f;ﬂ:}. let us transit to the Coulomb gauge with the help
‘and ar;‘:‘

» ﬂﬂpeatively, which
(TR Yy

ia the t:mns-
£ d"ﬂ wie)

of a spherical-symmetricel gauge transformation. ;‘;
stand for the potentials £, and Fu
are reduc:éd to the Coulomb gauge; here U=e
formation matrix of 4, to .Z‘ and, correspondingly, S=e

of/ \Fu v herig A

The conditions of transverseness of the potentials -‘f ( .}

igs the transformation matri

and 5‘- fﬁ’.c) which are written in the asymptotic region take

the form:
f—% (z??:—&gn’a 2y 12k, ) (a)
: e
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Here at k’n‘, (z=+ #) ig expressed through ¥ and fiﬂ as fql-

lows:
3.:: 1-2 A, iiaay
o
: = A, cos 24 + sin’y | fl10}
A= byt ¢z

and, aimilaply%thr{mgh o and i
~ -7 :

FET
Exﬁﬁz{i‘ﬂzﬁv"ﬂm?) . (1)
ﬁ.i"_" 93*?’-"‘2

Remark that th;a equations of the type (9) have been considered
by V.N.Gribov, though for another purpose. In ref. 8 the equa-
tions of the type (9) are interpreted as the equations deserib-
ing the motion of a pendulum with friction for which the analogue
of T is € %/% | the analogue of the force of gravity is
(7-2h, ), and that of A; is the force directed perpendicul-
arly to the plane of motion, Teking into account eq.(8) and de-
'Inoting the solution of eq.(%9a) via ¥, at T — = ', one can
gee that in the aﬂymptotic' region the solution of eq.(9b) tends

to Yo where it

2y, = -2, - . (12)

Substituting eqs.(8) and (12) into eq.(11) and comparing with
eq.(10), it is seen that at *> ¢ the potentials-doubles in

a Coulomb gauge are related as follows:

———

e Er Vel P oy (13)

4, In this paragraph the félluwing gstatement is proves:
there are no potentials-doubles satiafying the Yang-Mills equa=-
tions with the same sources in the class of spherical-symmetrice-
al fields.

In the case df existence of such potentiala, the Toldowing

equality musi take place:

afe .~ £ pt
& 3 _;',{c{-’fj'_ga"} = ‘?, _ (14)

which follows from the Yeng-Mills equations. Using ﬁdzﬁ“_— Ai

: |
one rewrites eq,(14) in the form:
ﬁ.ij 15-&3}'-![1': g

d‘;yﬁ 'Lﬁf‘qr=g ity . (15)
ﬂa#‘aJ_‘" a;Hy=0
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The gystem (15) can have the non-trivial solution if Hs (Hy+#, )=

= 0, This condition is realized only in two cases:

a) "":":"f"farﬁ'

The condition (7) is here fulfilled, whence, we have only the
trivial solution: ¢, = /‘r-'.‘, .

b) ,i-'fs=ﬂ.

In this case eqe.(5) and (3) lead to the following expres=-

sions for Y, and A, :

g,a='f"'4'a b, = f"z‘éz . :
‘?r:r-/!'f '! ] Ay = ezﬁ-r‘ - (16)
?5:-;!34‘- "‘L&z a3=-;:r—{}'-f{

f 4

With the allowance for eq.{15) it follows that the solution with.

Fu ﬁi is possible only. Thus, the potentials-doubles describe




a different distribution of the externmal sources.
Pinally, note that in the four-dimensional case of a class

of "axial-symmetric fields considered by V.N.Gribov in ref. 8
one can also ohtaiﬁ expliecit expresaidnu for the potentisls-
doubles. '
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