MHCTUTYT SAEPHON ©U3MKU
CO AH CcCcP

B.G.Konopelchenko, V.G.Mokhnachev

ON THE GROUP THEORETIC ANALYSIS
OF DIFFERENTIAL EQUATIONS

INPEITPUHT U A ® 78 - 96




ON THE GROUP THEORETIC ANALYSIS
OF DIFFERENTIAL EQUATIONS

B.G.Konopelchenko, V.G.Mokhnachev

Institute of Nuclear Physics,
630090, Novoeibirsk 90; USSR

Abetract

It is proposed a generalization of the method of group
analysis of differential equations to the symmetry groups more
zeneral than Lie-Backlund groups, in particular, to the non-loc-

al groups of transformations.




3. INTRODUGTION

The invariance of the differential equations of mathematic—
al physics under some group of transformations is one of most
important properties of these equations., S5.Lie proposed the sys-
tematic method to search for the proups of symmetry of differen-
tial equations which was developed later by L.V.Ovsjannikov [{].

In recent years it turned out that differential equations
can have the symmetry groups which camnct be described within the
framework of the Lie=Ovsjannikov method [2] . In refs. [3-5]

a wider.scheme which includes new groups of symmetry was con-
structed., The Lie-Backlund groups considered in these papers

are characterized by the fact that the corresponding transforma-
tion laws contein the arbitrary-order derivatives, All the loc-
al conservation lews may appear to be described in the framework
of these symmetries.

However together with the local conservation laws it makes
gense to consider the non-local ones which can carry an essential
information on differential equationa. One cen find the examples
of non-local conservation laws conatructed in the atudy of some
differankinl equations in papers [E,T] . The groups of symmetry
responsible for an appearance of the non-local conserved quanti-
ties cennot be described in the Anderson=Ibregimov scheme.

In the present paper it is suggested a generalization of
the scheme of the group theoretic analysis of differential equa-
tions. This allows us to describe the grﬂuﬁs of symmetry of dif-
ferential equations which are more general than the Lie-Backlund
groups. A mejor attention is here paid tc the groups of non-loc-

al tranaformations.




The formalism proposed is applicable not only to differen-
tial but also to integro-differential equations.

In section II the Lie-Ovsjannikov scheme is reviewed briefly.
Unlike the standard approach (see, e.g.,[T]], we ghall use tho=
rough the infinitesimal form of description. It 1s usually introd=-
uced (see ref.[ﬁ], pp.46-58), first of all, the notion of prolon-
gation of a space, then that of prolongation of meppings, and fin-
ally, the notion of prolongation of trensformeations. Here we keep
to the inverse sequence which is moat convenient and transpareni.

The infinitesimal form has been employed in the book [8]
as well. But the advantages of this approach are used, in our
opinion, in the present paper more completely. In particular, it
is derived the formula (3) greatly simplifying the calculations
and proofs.

In section III the Lie=Ovsjannikov scheme is modified in
such & form wherein the arbitrary functions are independent va-
riables.

Tn section IV this scheme is generalized for the case of
arbitrary integro-differential trensformations.

In section V some questions of the symmetry of differential
equations and also the relationship beiween symmetry groups and

conservation laws are discussed.

II+ The Lie-Ovsjannikov scheme
in the infinitesimal form

L

Just as in ref. [1]., the operstor X will be called the
infinitesimal operator of the symmetry group (or, briefly, the
symme try operator) of the differential equation W=0 if
RW‘U *. Two possibilities have been previously considered:

* We use the notation and the terminology of refs.[1, 3-5] .

A : :

1) Xw =0 in virtue of the initial differential equation -
the Lie;msjamikov symmetries. This class also involves the group
of Lie tangent transformations (see ref. H] 2.

2) )‘(m- 0 in virtue of differential equation itselt and its
any differential consequencies - the Lie-Backlund groups [2-5] g

Let us remind briefly the Lie-Ovsjannikov scheme. Let {I;’}
(5'= {,...-,M) be a set of indepanﬁent variables, and {u"}
(K= 4,..,M) Dbe dependent variables. One writes down the trans-
formation law in the infinitesimal form:

¢ — Xt = X* + € EL(I,U)

o : (1)
uf— u* = u” *EQ“(x,u)

Here € is the group parameter, € EL and EQ_“ are the va-
riations of the corresponding variables,

At the first stage the arbitrary scalar functions UH=UH(I‘)
are considered as the functions given in Banach-space ‘}f with
the coordinates {‘.‘.C."} . For convenience, the operator of partial
differentiation will be denoted by @)L . In other words:

‘D:.u“=u: ; 95“:.:]"’1:& ' and so on, (2)

The transformation law for partial derivatives U-:t... te. 18, of
course, determined from egs.(1) and (2). ﬁ;_ stands for the
operator of partial differentiation with respect to TL . It is
natural to demand that the relations (2) be inveriant under trans-
formations (1), i.e. that, for example, ﬁ;_ u* = U'{'_ is transform-
ed into ® U= UY . Using the well known chain rule

ﬁ__, (ﬁari)‘b; twice, one can expresses %;_ via @; with an ac-

curacy up to the first order on € .

B, = (B.X°)9; =B (X3-¢¥)9, = 0,-€(B.§") 9, -




|

D.- € (D END. x°)Ds = D - € (DF)(D, (Ke- EE))

E}E"E{‘E};Ei)gg * 0(51)

For convenience, let ue introduce the following notation

91533 Ei

Q: have & different load. So,

D, -9, - cE D (3)

. Note however that the expressions ?J‘:?‘

And epplying eq.(3) again, one gets:

o : - = ~ = _ . e
gl..t e 91‘..« 5 9&{9{:;” 91‘”1 = & E.Ll_”.{_n @l_ . {4)
n=4
Y e
it ﬂzi. LZ';—} Ei;-*-i—w Oive ™ D, B
where >  denotes the summation over all possible » -elements

w) ; : :
samples from n . The samples (- ‘.““1 and §q - '5"1 are con-

sidered to be different only in the case when n,¢n, s or when

among 4+ L, there is at least one number not equal to any of

$1 >l

To find the prclongation of treansformations (1) on the va-

riables u'; u'.‘

v A
it K [ ] bl 1 | 4 L ;, [ ]
u';=u,‘+er2i 'uii= U;; *E?ii and so on via E and 0

The prolongation of transformetions (1) on the variables

it is necessary to express Q': ; Q:'.u it

are obtained from eqs.(1) and (3):

i

B U =l = (D, - eEI DU+ en®) =
(S pteulE ¥ 0(e)

#hence:
K K K g :
7. =90 -d,F (5)

This is the known formula of the prolongation of transfor-
mations (1) on the variables *[1'] The prolongetion of
transformetions (1) on the variables u:r“ i, 1s found in an
analogous way, using eq.(1).

The second method for finding the prolongation of tranafor-
mations on L.i:i consiste in applying eq.(3) to eq.(5) and so on,
It is more convenient to derive the prolongation formule by means
of eq.(4) in a sense that in lthia case the intermediate differen-
tiations heve been already performed.

After deriving the formulae r;if the prolongations of trans-

formetions (1) on the variables U7Y,...¢,

the notion of the pro-
longation of meppings is introduced: from the mapping |}: ‘I—r ﬁ

of & space "Z in ag y Which gives by the formula \d =

=" (x) (g"e‘g), it is constructed the prolongation of this mapp-

ing to the mappings u w—-r 'H » u Q—r— ‘y and 8o on. Corres-
pondlngly, the 1at-ter are giv:.-n by formulee ["[] g B u(x);

= B u ('JE) sess 8nd S0 on. Here Y E‘gl a ere the part:.al
dariv'ativas of the i-th order, . : :

At the third stage the prolonged space is constructed:

R e
i ]

All these constiructions are required to have & possibility
to treat the symmetry group of a differential equation as a group
of transformations of the coordinates of the corresponding prol-
onged space. The differential equation itself is understood as

an equetion giving some submanifold in the prolonged aspace.

*  The coordinates corresponding to LI':: are not yet introd-

uced by us.




As easily see, the transformations of the coordinates of
prolonged space form & group iff the transformation laws of the

coordinates repeat those of their corresponding variables:
5 i -r-f" .;IE- + € EL(I,B)

Dl Al T

The tranaformations laws of the coordinates gl, H‘ sases Trepeat

(6)

i
the tranaformation laws of Liil"'I Lx]‘ suws & A willtbeccme obvious

Fs .
if we prove the formula analogous to formula (3) but for the

total-differentiation operators being of the form:

AT e
%L = ’axi léq_ b'ﬂ: g.‘h‘- h'é.‘

Since the coordinates '::C;'!I LJK, ‘é‘r" are independent, the ordina-

: i
ry partial differentiation, for example, of ld‘ with respect to

: ]
= yields zero: '&g =0 . In tlhis scheme the operator of

DX

total differentimtion poasesses all the properties of the par-

tial differentiation in a usual sense.
If one introduces the nntntion:
_a ~K a
%i. ‘a-r_:. % i K g‘“_ ? T
93
then it is poasible to show t}mt all the calculatione leading to

formulae (3) and (4) and the formulae themselves occur for the

operators of = total differentiation as well,” Best of all, this

can be done as follows. Let us assume that fal;'nzula (3) is also

valid for the operators of totel differentiation. As before, we
obtain the prolongations of eq.{6) on \dt,..., i,e. the analogue
of formula (5). Enowing the prolengation of eq.(6) on LJ: . g:l 2

it is easy to exprees 9,; via 9., , what leads to formula (3).

L

*+ For this reason we demote them by the same symbol.

Let us carry out these short calculations only for the case

of "cut-off" operator §L= :SI" %L -ﬂﬂ
4 - R ot .ok 329y° D _
9 =gt 2wt (i r€ g = €Y E"‘)Bg" oy
5 ' .
. SR EE: ) E\Es %: Le) 3‘

-D'I" 3 ax:. L bg i
- on" o :
- €L + £ _E = G by

Thereby we satisfy ourselves that our assumptions true.
The differential equation is given in a prolonged space by

the equation:

W_(x.‘z!uléi,... )“—-‘O

The mapping m—? ag is called the solution of a differential

equation if

w(x, u(x), Li(I),“.) =0

for a1l x €% [1].
Tt is seen from formula (5) that if & “ and (or) ‘2"
depend on L o , then lzt will in general case depend on H" "

* and so forth., In order that a

then '2:; will depend on
group of transformetions act in & finite-dimensional space,
there exist two possibilities:

a) Ei' and Q[ depend only on X' and g“‘ - the group
of point transformaetions (and their prolongations);

b) EE' and [’l“ depend also on “ put % and 3“
are transformed by the related laws (to exclude the dependence

Qt on g“ ) - the groups of Lie tangent transformations (and

their prolongations).




The last case is poseible only at M =‘1 s 87 M > :|. the
and (or) Q“
ty to the Lie-Backlund groups [3] .

: ¥
dependence E" on lJ leads us with necessi=

4

In this case formulae (6) take the more general form:
BBt e (X, Y, o)

 Fis ks ARk %‘

III. Modification of the Lie-Ovasjannikov scheme

(7)

W
.. are conaidered

5 : "t):{u") 0.

In the Lie-Ovsjannikov scheme X iy
to be independent, but for an arbitrary function
(ne can however modify this scheme so that to each arbitrary
funetion of Ii', u"‘ u:r_, its own coordinate in the appropriate
prolonged space is put into correspon&enca.*

With the known transformation law (7) eand its prolongations

3
on " ... the prolongation on arbitrary functions is obtain-

* R
eble, by expansing in a series the transformed function and by
neglecting the terms of the second order and higher on €& .,
The operator of total differentiation is then writtem in

fhe form:

D, = Sd-f{i'a{( ) _ (8)

where ‘§.= k] y 8nd b&= _-_3__

4 i o%
operator character of this expression. Various functions are in-
dependent in & sense that :—_Ei = [‘S‘ —"‘?) where BG - "P) is

the Dirac delia-function.

« The brackets denote the

*  0f course, the coordineteas for % and 0{-}- -i-ra are not
considered to be independent (g{' ]5 are the numbers).
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If in the Lie=Ovsjannikov scheme the operator of symmetry

is written in the form:
l .
X=ELB++QKB +r2K EI"
L i A L M
where the notation Zt = {‘JC iy Ty g e gt

g et

2
represented in the ferm:

ok R e

Restricting the set of functions —g by the standard baais

is introduced, but now this operator is

';1"- , we ghall apparently return to the scheme of the papers
.31 -

In the approach proposed one may consider the left-hand
gide of the differentiml equaetion itself to be a new variable.
Then transformatione (6) induce the transformetions
and the task of searching for a symmetry group is formulated as
follows:

The group of aymmetry is seeked for which:

1);*"’ -S- o) (Lie-Dvsjunnikav scheme}, or

2 ERy gngaw & £ DB w +- -
{(Anderson-Ibragimov scheme). Here "“1% ‘E';.“ are the arbit-
rary functions of 2" , numerated by E:everal indexes, ‘E};_ is

the operator of total differentiation.
IV, Integro-differential prolongetions

Begides two poseibilities studied in the preceding section
there ia, ae easily see, the third one: XUJ =0 due %o the
integro~differential consequencies of an equation, in other

words:

M



o~ 5 -
.+Z,§.L]A+,LLL) CII *l-‘gﬂm-l* z—gkﬁiw-‘”'

i=d ° 7 ted

E -

Here "'g-L:‘PE }g.o , ‘ELr*- are the arbitrary functions of Z¢ .

Let us construct & scheme of the group theoretical analys-
is of differential equations, genera-ting the scheme of works [1] 5
[3-5] and taking account of this third possibility.

Ones has to modify the Lie-@vsjammikov scheme in the form
wherein to each arbtitrary function its own coordinate is put
~into correspondence. The reason-for this is that under cﬁﬂsider-
ation of integrel prolongations the necessity arises to find
prolongations of trensformations (7) to the integrals of arbit-
rary functions. Together with introduction of the coordinate for
S UKC‘I‘L it is required to introduce the corrdinates for

S(U"}‘ dxt ,‘-gu“ '.,i.“ t‘.‘{*x‘t as well, and so on, i.,e. for the va-
S-S('x,u ,Li,.--) dxt

In the case of Lie-Backlund groups, due to propertiea of

riables of general form

the operator of symmetry sz a differential operator it is pos-
sible to confine oneself to the basis {-ai} s8ince differen-
tiating the arbitrary function of ?_L , one obtains again the
function of 2% , i.e. the basis J'_z'iii is complete.
As readily see, in the case of integral prolongations the
basis {_1"", jzl dx?’ } is not complete since, for instance,
g(i"-)?- cdx* is no longer expanded in this basis. Therefore, the
action of the symmetry operator on the last function will not be
determined. The way out of a situation is just t¢. ‘ntroduce the
coordinates corresponding to the integrals of arbitrary functions.
We get the formulae analogous to (3) for integral np.rarlturﬂ.

Let us consider now the integral S?dﬁf" where Q is the

12

Iy

arbitrary function. Under infinitesimal transformation X'-> Xt=

= X+ €% and hencer
fd®e (@) = ({dxi(D)e eEL(B) dr']

Omitting the arbitrary function P , one gets the enalogue of
formula (3)":

Sc\%’i( ) = S{dxi( e E dr*( V] @

The integral prolongations can be found by formula (9).
However we shall obtain them directly from the relation E‘: Q‘J‘._ﬁ""“
(ther is no summation over ( ) where ﬁ";‘- Sﬁ‘d‘it + We have:

7 diadd EQM = S(u"+ EQ“)( dxt+ ¢ 3 : dt"")

i~ K : i 3 i i ¥
D (US+en™)- B, g(u"d'r'- « €n*dri «eu"Fidxt)

or

Q“L'-'-' j(?n+ U‘Ei)dxi (10)

Formule (10) ia the analogue of formula (5). In order to
derive the formulae of the prolongations of transformations (7)
for the integrals of arbitrary functions, it suffices to substi-
tute the sxpansion @
the formula

|dxe @ -

in a series in the right-hand part of

[(Bdxisedgldel) (1)

- and to take into account the terms of the first order on €

The higher prelongations can be found in a similar manner,
The integrals in formulae (9), (10), (11) should be treat-

* As previously, the brackets indicate the operator character

of the expressions.

13




ed ag line integrale, The independence of these integrals on
the path of integration, as the standard calculations show, is
ensured by the symmetry of highest prolonged v&riahlea_ﬂver the
lower indexes, Taking into account this circumstance, it is ready
to show that, for example, the operators (3) and (9) are, as
it 'should be, inverse,

Thus, the integro-differential prolongations are consiruct-
ed with the help of two mutuaslly-inverse operators. Therefore,
to the prolonged variables in whose definition a pair of inverse
npefgtsia is present and to the variables where this pair is ab-
gent at all, the same coordinate should be put in correspondence.

Finally, note the following. Doubling the appropriate space,
ae it wae done in [1] , the constructed groups of symmetry may
also be treated as groups conserving the tangency of infinite (in
the generel case) order, namely, to consider them as groups leav-
ing invariant the manifoldas given by formulae:

d%?ww - E{w dxd=o0
&Ln-ﬁp S4--8p S

(}liu' = 0,1,25004) Where —g are the arbitrary functions of 2.
V. On symmetries and conservation laws

In consideration of the symmetry groups of Lie-Backlund
type the Ibragimov theorem (4] seems to be useful which may be
formulated ae followsa:

The differentiasl consequencies of an equation have & sym-

metry not less than the symmetry of the initiel equation.-

For proof, let us use furmulﬁ (3), rewriting it in the fcnrm:*

A
*  TNote that OW = € Xw

14

i s A 3
A
let Xw = 0 for the equation wW=0 . Then taking into ac-
count that D,w = O and using the relation

8(9;®)= LS%L)M} + B, dw

or:

D XWw - XD, = FLH W (12)

A
one gets X ©;¢0 = O . Thue, the theorem is proved.
Let us determine the connection between the symmetry of
an equation and that of its integral consequence. Following from

the relation:

h) {w dx¢ = I(.mclxh S dxt 4 Sdt") B S w dae
one gets .

€ i?wolxi = S(md‘rf—i eXwdxt+ew E:CI'):'- )- SLDCJTL

&

Then, from W=0 and I?U-"-'O ;.::-ne finds Y Smdtf- =0 + Inver-
sely, from w= 0 and igu;&-xi= O it follows iu) = 0 . Hence,
we have shown that the symmetry of the integral consequence of
an equation coincides with that of the initial equation.

Whence, the differential consequences and the initial equa-
tion have the same symmetry (see eq.(12)).

In ref, [4] for the set of differential ecuations it wes in-
troduced the notion of a relatively 6— ~invariant weak Lagrangian

i‘, as a function of dependent and independent variasblee such

that: : H
: Xl eud Blreio

%—“E—iz O (£51, > (13)

A A
. From X@;_u) =0 it follows only that Xw = const

o




Here 511; is the variational derivatives. Equalities (13) are
fulfilled due to arbitrary differential consequences of the ini-
tial set of equations,

For the more general groups of transformations considered
in the foregoing section, egs.(13) must be fulfilled in virtue
of integro-differential consequences of the initial system.

The theorem 2 of ref., [4] for the local relatively G=invari-
ant weak lagrangians is applicable to the casé of non-local groups
of transformations with very small variation, and namely, the fol-
lowing theorem takes place:

Let the arbitrary set of differential equations with smooth
coefficients be given. For this system there exists the conserva-
tion law E)LA':: O (due to arbitrary integro-differential consequ-
ences) iff the initial system admits & group of non-local trans=-
formetions and also the relatively G-invariant weak Lagraﬁgian,f
of the system exists. The vector ﬁli ig calculated by the for-

mula :

Mo 250 (P-FUN2E < 2 ' 5,% 12
=i th1--

s=1 iz Bu;uru, v=i & 3 .,“...5,,11 g

It is obvious that in general case the conserved quantities
will be non-local eince §& ¢ and ll" are the non-local func-
tions of Qtialjtlf:, However, all the local conservation laws
are derived by the given formula also. In this co.  #ction, the
formulated theorem is more general compared to theorem 2 of L.
[4]. The proof is not, in essence, differ from that of theorem
2 of ref. [4] and it ig here omitted.

16

VI. Conclusion

The above-constructed formalism is & natural acheme for
gtudying the groups of symmeiry more general than the Lie-Back-
lund groups. The groups of this type -~ the groups of non-local
transformations, and correspondingly, the non-local conversed
quantities (integrals of motion) are characteristic to the dif-
ferential equations integrable by the method of inverse spectral
transform.

The highest integrals of motion of these equations, both
the local and non-local onea, admit a natural interpretation
within the framework of the formalism constructed,

This question and also the question on a connection of
conservation laws with the group of symmetry irrespective to the

variational principle will be considered elsewhere.
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