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FERMION REGGEIZATION IN RENOBMALIZABLE YANG-MILLS MODELS

V.8.Fadin, V,E.Sherman

Institute of Nuclear Physics, Novosibirsk

We calculate the high energy behavior of vecior meson -
fermion scattering amplitude near the backward direction in the
spontaneously broken Yang-Mills models within the leading loge-
rithmic spproxim@tion snd find, that the fermion is reggeized.
The amplitudes of inelastic fermion-exchange processes in the
multiregge kinematics are also calculated. These amplitudes have
the multiregge form. The integral egquations for the elastic
process partial wave amplitudes are obtained. -



Introduction

Recent interest in the particle reggeization problem has been
arisen by the results obtained /I,2/ that the vector particles are
reggeized in Yang-Mills models with the spontaneously broken vacu-
um symmetry. In /I,2/ the proof was carried out in the main loga-
rithmic spproximation ( 3,‘-’ hsad , 32 << 4) up to the sixth
order in coupling constant 3, « The calculation in the next order
of perturbation theory /3,4/ made 1t possible to propose the gene-
ral structure of perturbation series. The sum of these series may
be presented in the form of the integral equation. Its solution
for the negative signature is the reggeon, where as the Pomeran -
chon is a fixed branch point located at the right hand from J =4
/3,4/, which appears, by all means, due to the effective many
particles states contribution in ¢+ -channel. The results for the
sixth and eighth order was then confirmed in works /5/ amd /6/
accordingly.

There is the next questiom naturally arisen, if the fermion
is reggeized in such models or not. It's well-known /7/, that in
QED electron is reggeized in the main logarithmic approximation,
i.e. the backwards Compton amplitude in the own (positive) signa-
ture has the form of the reggeon contribution. As for the nega -
tive signature the situation is rather complicated even in QED,
Already in the sixth order the diagram represented on Fig., I,
containing no terms ~ # %S and hence, being negligible in the
own signature consideration, must be taken into account while the
negative signature is concerned, because its imaginary part on
is of the normal ~ L 3‘&: S order. There is just the same situ-
ation that in the vector meson reggeization problem in which such
disgrams (with the replacement of fermion te boson) don't contri-
bute in the own but remain in the else (for vector meson -positive)
signature. Such & contribution be proportional to the three par-
ticle loop in the two dimension perpendicular momenta space /I,2/
and mostly 1s alike as the cut contribution rather thanm reggeon.
In the given paper we deal, as a rule, with the fermion reggeiza-
tion problem or, saying equally, with the positive signature
smplitude., As for the negative signature amplitude, ws only present
the integral equatioms, The similar equations msy be written in
QED and are also presented in our work.



In this paper it is shown that the fermions are reggelzed in
the main logarithmic approximation. As well as in /2/ the proof
i carried out for two Yang-Mills models with spontaneous break-
down of vacuum symmetry in one of which all the vector particles
have the ssme mass, the other involves photon. Both the models
contain the fermion duuhlat'(f:)n), the fermion masses may differ
in second model., If it's & case, two different trajectories S;(QL

5‘2@[{\ appear with 8,1 (% = Mp)= —%'} Sz(fi(: Mp) = %. As well
as in QED the reggeization in second model occurs in conventional
sense only due to the ¥ - quantum presence and infrared catast-
rophe related to them. Every obtained trajectory is correspondent
to two ones /7/ of the opposite parity. We shall no¥ dwell upon
this fact further.

The consideration is carried out by two ways. The first way
(will be referred as diagrem one) is as follows. Similar to fI2/
we obtain imaginary part of the amplitude Ju¥ from the unitarity
condition in s(u) - channel,after that the main logarithmic term
is found by means of dispersion relations. This method is,however,
simplified to some extent. In the first place, we note that the
diagrams of the type represented on Fig.l don't contribute in the
main logarithmic approximation and may be neglected at once if
only the reggeization problem is solving. The other diagrams may
be separated in two types. At first, there are the ladders (Fig.2).
Such ladders contain not only the logarithmic but also the double
logarithmic terms, being produced due to integration over the
range of large transverse components of virtual particle momenta
/8/. But the contribution from this range is canceled in the sum
with the contribution of the second class of diagrams : i.e. the
crossing diagrams sssociated with the ladders of the type repre-
gsented on Fig.3. The main problem, therefore, is To check exactly
this .cancellation of the double logarithmic terms. We propose here
8 simple rule for the models discussed, how it is possible to make
the unambigious separation of the main logarithmic term by means
of the term of ladders contribution only. This rule can be checked
in the sixth order of perturbation theory, for the vector meson
reggeization problem it is verified up to the eighth order. After

this the answer is reduced to the sum of "effective" ladders every
step of which is correspondent to & tramsition matrix T;  between

the up and down states, depending only on the transfered moment
This results to the reggeons with trajectories depending on the
eigenvalue and eigenvectors of T; .» For the problem discussed
there is a single reggeon with isospin A . The state with iso-
apin.3/9: is appeared to have no cnntriﬁhtinn in the main loga-
rithmic term (the correspondence sigenvalue A;,‘-EO). The method
stated above is useful only in calculation the main contribution
in own signaturel

The second way similar to /3,4/ is based on the integral equa-
tion and may be used both for the positive and for the negative
signatures. As well a&s in /I,2/ we use a dispersion method, so the
amplitudes of inelastic fermion—exchange processes in the multi-
regge kinematics are also calculated. Up to the eighth order of
perturbation theory our calculations give simple multiregge form
for the inelastic amplitudes, which can be easily generalized to
the arbitrary order. Using this generalization the integral equa-
tions may be written for the elastic partial wave amplitude of
arbitrary signature /9/ as well as in /3,4/. For the positive sig-
nature the result is naturally the same that obtained in the first
waysfor the negative one, we only present this equation without
solving it. The similar equatvion may be written in QED and will be
also presented.

In accordance to the methods of approach the paper consists
of two sections: in the first section the problem is solved by the
diagram way, in the second - by means of integral equations.

I. The disgram way
I.I. Model description

Two simple gauge models based on ST (2) group are considered.
The massless Yang-Mills vector particles (B -meson) acquire the
mass due to the Higgs-Kibble mechanism /I0/. In model I the vacuum
is spontanecusly broken by means of the complex isodoublet of the
scalar particles. As a result all the B -mesons have the same
masses M . The Legrangian remains invariant under SU @
transformations. In model 2 breaking is related to the real scalar
particles triplet, the neutral vector particle remains massless

( 'K'- gusntum), while the charged particle acquires the same maa#
m .
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The presence in this model of interaction between scalar particles
and fermions of type: ol int = — AVZ"’W?/E leads to the dif-
ference between the fermion masses after spontaneous breaking.
There is a simple relation between masses and vertices 1To be used
in calculations :

MP_ Mh = _.).':_.. (I:l

i 1
Where is the vector meson charge. These models were descri=-
bed more detailed in /2,I1/.

To avoid the complications related to the infrared divergen-
cies and SU(2) non-invariance, the model I would be supposed, as
a rule, in the following. The complications, appearing in model 2
will be considered in section I.D.

I.2. Notations. Born approximation

Consider the process of backward fermion-meson scattering :
NB-» BEN. The Born diagram, corresponding to the main contribution
in this process at high energy, is represented on Fig.4. Notations
correspond to Fig.4 : p(L') is the moment of initial (fina1) fer-
mion, L(p!) is the moment of initial (final)masan, §= (}H—P} 4=pP- P
We are interested in the range $ >>m= q,~m. In this range the
Sudakov's technique is useful : the any vector L{- may be repre-
sented as follows :

3
T +9;P*+’<.:J. (2)
. 2 e
where " ':'P*E'"O L7 [, - 3 P) "P"?L‘ V 2pL S
Further we will omit the stars in notations.

It's a place to present in this notations the main contribu-
tion (}v 3FVE?), carraspcnding to the Born term 3

M gz- 4 z-
(L { 4{-‘ g M-—% Z u(F’) (3)

where Zr 1fgara polarization vectors of initial and final mesonj
62 ' are their iaotnpic vectors,
*3

F Pf‘ : r»):: 5 *""-rL\?
=¥ m R SRR

With the use of the 4’“ Fz 1nstead of X’“E only the Born
diagram on Fig.4 contribute, as well as in QED £/

I.3. The Method of Calculations

Let's proceed to the higher orders of perturbation theory.
The calculations may be divided into two steps :

I). It is necessary to sum all the diagrams in a given order
of perturbation theory, i.e. the ladders (Fig.2) and crossed
diagrams associated with the ladders (Fig.3). The result is some
"offective” ladders in which the contribution of the range of
large transversal momenta is disappeared; the rule being introduced
how this disappearance may be obtained by means of the form of the
ordinary ladder contribution.

2). The resulting "effective"™ ladders have to be summarized
over the all orders in coupling constant.

T.3.I. "Effective™ ladders.

Let's show, how the main logarithmic contribution from the
totality of diagrams may be exactly extracted by the form of the
ladders contribution. For simplicity we comsider the sixth order
of perturbation theory. By this example it will be shown what the
term "crossed diagrams associated with the ladder ™ means, and how
the necessary cancellations occur, It seems that in this case the
exsmple is more clear than the strong definition, being too comp-
licated to be used.

Two typical ladders are represented on Fig.5(a,b). Consider
spin structure of the step contributian in diagran_ﬁa 3

<~B|Tlan>m-— 5 (M+§ -k, -kl =
= 2[(M-Fae )+ (n-Garked-(-30] @

Pwo first terms in bracket cancel the fermion propagators and give
the double logarithmic contribution in JmM due to the integra -
tion over the large '<; renge. But it is easy to verify for all
possible kinds of fermions and mesons that in the models discus-
sed this contribution is exactly. Canceled with the crossed
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diagrems 6(a,b) and 6(c,d) respectively. Now consider the step
contribution in diagram S5b with Yang-Mills vertex of three
meson interaction @

H: ‘;-(I{*L"'kﬁx\z +d4L‘+P’“P7

The longitudinal part may be neglected and hence 3

{NBITINB> c» (ﬁu*‘T‘“) i
=[(M-Garka) « (u-Gavhed -2 (u-ga]

Two first terms in brackets are exactly cancelled with the diag-
rams 7(a,b) and 7(c,d) respectively. By generalization we propose
The simple rule for the main logarithmic term extraction in the
gauge theories,

It 1s necessary to subtract the sum of inversion propagators
of the leg particles adjacent to the vector meson line from the
contribution of every step in the ladder, The sum of the rest
gives the main logarithmic term. This rule is checked in QED and
vector meson reggeization problem up to the eighth order of
perturbation theory.,

It is necessary to recall that this rule may be used only for
the own signature contribution, if the main logarithm occurs in
ReM. For imaginary part, having additional 3.2 Im M « RF_’ M ’
the diagrams of the type represented on Figl must be taken into
account except the diagrams 5,6,7.

I.-_a «2s The sum of the 1H.ddarﬁ-

The formulase, presented in this paragraph, are mostly some
generalization of relations obtained im /I,2/ by means of the
8 -« chsnpel unitarity condition for the case when the two dimen—
sion diagrams in the trensversal momentsa plane have a simple form.
S0, consider the arbitrary ladders (Fig.8) with the any pair of
part:iclaa in legs V;}\(f « We are interested in imaginary part
in S-channel, Consider the one step in ladder (Fig.9a,b). Two
possible types of transition may be responsible for this step @

ViV > Vil (Fig 9aY | Vs v (Fig 8

Roal oo B 4
Let's define the matrix of tramsition T, in basis (V¥ V¥, ).

LY

As only the main term we are interested in, the matrix I w COTTESs-
ponds to the nonsense - nonsense tramsition. In other words, cal-
culating T:-_“ polarizations of B -meson must be choosen as follows:

f; = J-%‘_P# . f:-.:.-@[.;. If the T elements depend only on
the vector q , then imaginary part of the sum of all ladders is
as follows :

/S TR D Tt s AATIN

(6)
where { I| and |2 > are the external states, T "is the matrix
of transition between the extermal (semse) and internal (nonsense)
states, by symbol § the two dimensional Feynman loop is dencteds

(7)
Hers G‘ y G, are the propagators of particles W‘.\PE In genersl
there may be distinction between the particle propagators 'ﬂ" p ‘Vf
for different values of index i , If it's a case, the symbol
must be treated as & matrix ):‘*": Sh‘ I" » In the next
equations we treet Y as & number, as it is in the model I. In
model 2 there is a non essential complication.

The eq.(6) gives a sum of the several reggeons contributions,

corresponding to eigenvalues A and eigenvectors \§ s of T with
the trajectories :

§0(9) =n+ Xy

4x
(8)°
and residuss 3
. 1 n
r;\ (cn uy L S,i'_,_“ LT sn‘?}‘><;&'\.—r sl2> I
(9)
where nn is matched from condition ]1(1 ——3 const. (For the

S oo



&
fermion reggeization problem n = %—, for vector meson Wi =4 ). This matrix has 4 eigenvalues AT  and eigenvectors ‘P in
Owing to transposition symmetry of matrix T all the eigen- accordance with two possible isospin values 4!2 and 3/ 2 and two
vectors may be separated on the one of positive and negative signatures ¢'=X4 .
parity under index tramsposition I&>2 e B i( -a v AP, 1
N 4 B TIRY T RS SRGH DN M &,
| ) [2 6 - W ikt B
\Q"mﬁ( s s " ___SaM"‘\ 1 v
, de = T4°(M-9) | Yy = - (4,0, 1)
This vectors are responsible for the contribution of different 2 ) g Ve )
signature :

Vot =24, P = A E )

GJ‘:?* 7= M G‘: (The Clebsh - Gordam coefficients at B*n have the opposite
; ' (11 aign w:L'I:h respect to the current one, since the definition used :
Q"T' e it 8 4 | Bt = wl_' +i B\aon't coincide with that of spherical func-
where T , T, are signatures corresponding to the particlea\*ﬁ \}12. tion).
The real part of the amplitude is obtained by means of signature By comparing (I3) with (B), it is clear that JmH is described
factor, by means of the single reggeon contribution with isospin T = “f 2
Although the method of calculation developed here is of no and following trajectory i
principal hewness in comparison with /1,2/, but it is very -conve-
nient for the study of the reggeization problem. At first, it g(ﬂr\ i LAy (M =% € D)X
gives the possibility to write the answer at once, and second, it 4 X (I4)
points how the Regge parameters, namely, t -channel gquantum num -
bers and signature appear, in the main logarithmic approximation. where symbol I is defined by the equality (see 0q.(7)):
Yom M e iaeiadien ok L.
T.4, Fermion reggeization in model I. (_2 7-{\)?' Emﬁ _— (ﬂ"-lqe __l EM —T-: —‘l (15)
% e
Consider now immediately the fermion reggeization problem in
nodel I. For definitiveness we study the case of the "proton” (The additional minus in (I5) is & consequence of the definition
: exchange in ¢ -channal. Let's choose the basic states as follows: of vector meson propagator i
R, B .nB pB° . As it was shown above: T oo - 2 (M- 1”) i — G pV 20
So by aubatituting the number in vertex, it easy to obtain 3 r“'-‘ S mi__ t ) 3’“‘ 5 )
" h -2 . -24J2 o —\E The state ?:2 has no contribution at all.
AT" . (M_ q"‘ ﬂg -iﬁ Q —E 4 | To enswer the question whether the fermion is reggeized, the
? o __r = —?\E (12) residue has to be found. Fur the elements T ;ﬂ ubtf 5
g T > = B @ [a(L) LT 67 ]
| e 4 -2 0}
| I1
I0




v ensies = B8 o TEZLL
Can\Tle> =B ¢ [RFL TCY I

By substituting (16) in (6) and reestablishing ReM by signa-
ture factor 3

Re./[/!/“-:

(17)
the following expression is nbtg;nad $ . o - 2”
s Y B i g = M=%
F‘:er-f“(L’)a gﬁ;—egs"( s
{ ‘e &7
: l, Tey 2— u(P) (18)

o

M-4q,
From compearison (18) and (3) it is clear that the fermion 18
reggeized.

I.5. Fermion reggeization in model 2.

We shall not dwell upon the detail of all the calculations in
model 2. Only the complications, appearing in this model will be
considered here. In the first place, there is a difference between
the masses of B° and Bt (isotopic non~invariance), and as &
result the symbol {f must be treated as & metrix. In a strict
sense, it is necessary to find the eigenvalues and eigenvectors
of matrix T Y to solve the problem. But taking into account the
fact that T 1s & singular matrix, it is easy to see that,; as
pefore, the positive signature amplitude would be given by &
single Regge pole, corresponding to the extermal particle state
with the isospin 4[2 jn t -channel. The sole modification consists
in the rep}&cﬂant in eq. (6),(8),(9),(14), (I8) symbol p'g by
[%— X +=3 X ] , where for the case of the "proton”
exchange Y is given by (I5) with M = My,

v J%l(.x. { (‘“{)
I -

Yo R TR (19)

12

Eygbol :[ corresponds to the twe dimension Feynman 100p with B?n
corresponds TO one with B°p; the coefficients in replace-
ment are the square of Clebsh ~Gordan coefficients; & 1is &
cutting parameter due to infrared catastrophe. Such a replacement
conserves the fermion reggeization (itfonventional gense similar
to QED).

The additional complications appear due to the difference
between the fermion masses: MP % M, . What happens in fact is
that the two trajectories appear 3 one for “"proton”, the other for
upeutron”. How does 1iv occur? On Figl0O all the elements of T
are represented corresponding to Eha “proton” pole. For transi -
tions pB®—> B°p (Fig.I0a) and nB—>B°p (Fig.I0b) we obtain,using
our rule : | oo (Mp—q,}'. The transitions nB —> B n and

pB® —> pB° have & zero contributions as pefore. The fact is
essential that the contribution of diagram T0c in tramsition
n  ger W BY has the other form:

T8 (ne* >nB") = ¢ (M- 9.)
(20)

But in model 2 there is one more diagrani 104 with the scalar par-
ticle & , which contribute as follows :

g + £\ _ 2 T s
i 3 (HB -—bHB\—“E'Egm——g(MP Mn)
(21)

The eq.(I) was used here. gum of (20) and (2I) give for this trean-
sition T c> (Mp—§.) .In the same way 1t nfy be shown that
the sum of diagrams IOe and IOf, corresponding to the "ghost"
P"’ axchange gives the value T o (MP_ i;) . Thus, the matrix

T is obtained in model 2 from that in nodel I (eq.I2) by the

replacement M —> Mp . This corresponds to "proton” reggeize -
tion with a trajectory 3

2
3 A q -~
4 e 2 3
SP(E[:\) wg T 3_3 (Me ‘i,f}<3 | T X)
(22)
The anslogous proof may ‘be carried out for "neutron” .
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2. The intEEal ﬂglﬂtim-

In this section nodel I is assumed. We
was developed in /3,4/. 1t 18 necessary to

use the method which
¥now inelastic ampli-

tudes for finding the elastic scattering amplitude by the disper—
sion method. Mein contribution to the § - channel imaginary
part of the elastic amplitude arises from the multiregge kinema-
tics : S>> m"_} —+. ~ m® . Our calculations up to eighth
order of perturbation theory show, that in the main ligarithmic
approximation amplitudes of inelastic processes in mnultiregge
kinematics with fermion sxchange in some channels with small mo-
mentum tresnsfer ¢, 88 well as amplitudes with only vector meson
exchange calculated earlier /3,4/, have simple pultiregge form
which is easily generalized to the arbitrary order. The result
is as follows.

The amplitude of n -particle production in aultiregge kinema-
tics can be described by means of contribution of single diagram.
Tig.I1I gives examples of such diagrams for tl:te production of n+2
particles in vsctor meson - fermion calliaiuﬁ&inamaties :

‘{‘:":)- —'d.‘ :b‘}“-dz }}---}}#c{ﬁ#{m V:R/!s
A S>> \Fn-n > fn' B s a0 D f& o m/s
¢ £ N e

1 ;
NSRS SO S
R L= oa; L + PiP 900 5

| i 2 2
CL.‘ - Pn-—[_. ] %f- -—.:CL;_,.{ﬁ-P;__,‘ , t >4 ) m. = P, (24)

Bepre solid lines are fermiomns, Wave lines are vector mesSonsj
double solid and double weve lines &axe reggeons.

Production amplitude corresponding to such diagram is found
sccording to the set of rules, presented on Fig.I2. Ae it is seen,
each vector mon;rﬁgﬁm 11.111: with nmn‘bulé q; gives the faatnri
(see /5144")2(*?," ) 5;,(*"\_ , where T; = T S: = (11’.4—1_15.-1\:
=(PL*‘PL-1\| == Sol1q Bias jaac‘}: Ia_;rics:&:{_?mon g.‘inah)with mnomentum

g, gives the factor [H""li*—] §,°\¥1"¢ [Here (q) is given by
eq./I4/y oK (%) is the trajectory of vector meson obtained in/1/:

where 3

154

e
oA (t) =4 +{§;\3(‘t-mt) S d2k . ;
: (m-kZ)(mi-(q-kY)  (25)

Some of the vertex functions reggeon - reggeon - particle and

particle - particle - reggeon ( d < o
PN Ty T ¥ec! s r'a B r'.,f ¢ ! ) were
. exes &, d; , ¢; are isotopic ones for

vector meson; \§ | tg‘ - for fermion; A }J are polarization
indexes ( XN =3 corresponds to a lnngitzzdinally polarized vector
particle); ﬂ denotes polarization vector for vector meson With
this set of rules we can calculate with unitary conditions ;he

contributions to the elastic amplitude from any intermediate states
The sum of these contributions can be presented in form of integ- .
ral equation (see ref./I2/ for detail). Before presenting this
equation some transformations are convenient 't:h perform, At first
the amplitude may be rewritten in form : | '

B e Vo sl a4 e d ' -
s ¢ “ (L) & T { ?2& ngf (‘R"Tz + fag) +

ARG A GA

s Wes. ASDUNE a)) v i 4 9 M

( o = (‘H'.’fi i ‘ﬁ"’f‘?)} 2, [20 u(P) (26)
to separate the contribution with isospin "{Q and 3] g im t -

channel and 'Wi‘b‘]il the positive and negative signature. Further, we
transit to the d_ = representation ( W = &,- 3. )
2

Si-iaa

A7 i Ve (B

. 4
BN G IT " FIT (w'] ci/) (27)

- L O

Let's presegt F:@%“iﬂ the form :

& 4+
% - Y oy + q°
Fr@9) = MT . C; ‘g:"g fTiL
3. @R Jimt-(g-k): ] (M-koyeC 45) e
convenient for obtaining the first term in inte
gral t
with the coefficient I. The values 2.‘,’.‘ ; C_'ff are deﬁn:gu:::znows:

S atk,

+
— # = Pl it
C'!Jz o P ™ R 5 * "
4 ) 1“—. T4 ) CS{E = 0 :} C‘ifg'?:"g (29)

I5



Aa‘zzh C*'aquala zero, the corresponding state don't contribu_ta in
the m;i? logarithmic term as it was seen above. The falluw%.gs
equation presented graphically on Fig.I3 is obtained for 3 (k}ﬂ

79,12/

Fo- @ (-0 - GO- 1] 0k, 9) =

2 A2k oM -r: : A
- LS (T Dy,

what corresponds to the fermion reggeization.

The analogous equations may be written in QED for the ampli -

tude of the backward Compton - effect e‘a’«-xa’e « Presenting the
amplitude in the form :

: )
\HQE&JT—'—’ ﬁiaﬁﬂﬁ!}.(ﬁ*-'*ﬂ-) é’»’z GJM

{35)
we have in QED the eq.(27),(28),(30) with the parameters :

A + "
u-—._.—l-+ e ' = ——
(A ~..."1} _--t-’{) 2 1)'2 =0

AT pE A Sty +
: QH"L‘)_.I i g"l‘ [$—:1+<-M k) (Elmt..g(k'__ k)2) ) E'f g Ry
Ty (- (k-9Y) } {

(36)
i 2L e T t ] In eq.(30) it is necessary to take into account that c{((fc—if]-izo
+QH"' ) (H\i—(kl-* k)ﬂ\ M- k' -S.to i(k )le (photon isn't Eeggeized) and ‘bq realace 15\ (k} on
Here allgthe vectors m. treated as the two ﬂinOnlm um‘?mgd e ;'I/ 5‘* U,A — %—— -+ % g@(k} ~ E‘)
ol (_tp ? is the trajectory of vector mes Jl b 45 s The solution of this equation for positive signature is :
(see /25/9. The appearance of the expressions ((d(k) - ‘i) the
@(G.L]‘)—ﬂin the left hand part of (30) is a comsequence of o + < \] e A ) %)
fact that the spinors and nonsense polarizations get the additi- o ) = ( 3 - ) Im i ( S ﬁ) = _’f_ﬂ
onal factors s‘l! end S eand the reggeons are associated with - ?,J. 4(‘; ) (593
s terms st-ﬂ; . S“"" .The coefficients a, b are as follows
§.(3)-1 ?E(M@)S 4k,
—— D e — o, 3 7 o
(31) d<‘i : ¥ (M - aﬂ.\ ("”'?'_ (‘f,i.'“ ‘(L) )

4 ; (38)
The solution for 'S'E+ (k ,1/\ is 3 and W 1is a photon mass. This is in accordance with the well-
E known result /6/ on electron reggeization. The integral equation
for negative signature coincides with recently obtained results
(32) of ref. /I3/.
E: We are deeply indebted to L.L.Frankfurt, E.A.Kureev and
L.N.Lipatov for the interest to the work and many helpful
W 2 discussions.

‘{ —
F"‘l:(ﬁlq'\ e M._.?i [m-(&(i)—-.%)] (33)

The main logarithmic term is then as follows 1

_ J‘A\_i
‘H“Tz e h:-@ (i—"\ @ 2

£ 4

i by b as, = 63 = -

Mo}

d.lz = &

.r.-.-]--

£+ 1
%w O‘ﬁﬂ i *'w__(‘g‘(i\_%)

where 9@,} is given by /I4/. For E',F;(«),q,).n obtain:

(34)
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