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SOUND VIBRATIONS IN A PLASMA WITH "MAGNE' it
FILAMENTS"

DeDa R)'u't OV, M.P. Ryutova

Abstract

Under some laboratory and astrophysical conditions the
magnetic flux in a plasma may be concentrated in narrow,
mutually far-removed tubes ("magnetic filaments"). Long-wave
sound vibrations of such systems are studied on basis of the
equations of magnetic hydrodynamics. It is demonstrated that
even in absence of dissipative processes (viscosity, thermal
conduction, Ohmic losses) the sound vibrations are absorbed
a8 a result of an effect which in certain respects is similar
to Landau damping effect and which consists in resonance exi-
tation of bending waves propagating along the magnetic fila-
ments. The contribution to the damping due to scattering of
the sound waves by the filaments is found. Conditions under
which scattering is insignificant are indicated. Damping of a
low (but finite)-amplitude monochromatic sound wave is con—
sidered.



1« Introduction

In the present paper, we obtain the equations describing
the propagation of waves in the plasma containing the system
of "magnetic filaments" (magnetic flux tubes). The structures
of such a kind apparently exist in some Solar chromospheric
regions/1’2f. They can also appear near the boundary between
the plasma and magnetic field when the flute ingtability
develops.

comparison with the average distance [ between them (small
concentration of filaments). At the same time, we assume that
the characteristic dimensions of the problem are sufficiently
large for the single-fluig magnetohydrodynamics to be valid.
The magnetic field outside the tubes is considered to be small.
These assumptions are, apparently, adequate for some regions
of Solar chromosphere.

As mentioned in Ref. /3/, such a system has an interesting
feature: the long wave ( 3 >§-£ ) acoustic oscillations in the
system are damped even in the absence of dissipative effects
(viscosity, thermal conductivity, Ohmic losses) due to the fol-
lowing effect similar to the Landau damping. Namely, the ben-
ding oscillations can propagate along a separate filament with
the phase velocity H/[Z,';T." (f’e +ﬁ)}§:‘! where /H is the magnetic
field inside and .fk and JPE are the densities inside and
outside of the filament, respectively. If the plane acoustic
wave propagates in the plasma and the angle % between the
direction of Propagation and the direction of filements gatig-
fies the condition

Cool =V, /u : (1)

where &3 is the sound velocity in plasma, then the resonant
transfer of the wave energy to the energy of filament ogcil-~
lations takes place. Since in general the density and the mag-
netic field strength inside the different tubes are different,
80 the velocity ¢ changes from one filament to another, and
hence at each propagation angle g there are filamentsg for



which the condition (1)*} is satisfied and which absorb the
energy of sound wave.

The scheme of solving this problem is as follows. First,
we consider the motion of a separate filament with respect to
fluid and find the interaction force between the filament and
the fluid. Then, by the averaging over the volume containing
many filaments (bﬁt gtill small in comparison with the wave-
length), we obtain the expression for volume force by which
the filaments act on the fluid and which enters the macroscopic
equations of motion of fluid. After that we study the dispersion
characterigtics of the system and find out the decrement of
the sound wave.

2« Equations of motion

Let us take the initial direction of filaments along the
z-axis., The displacement of filament from equilibrium position
is characterized by the vector ?(z‘ 1) perpendicular to the
z-axis. Since relative velocity of the fluid and filaments is
the'quantity of the first order of magnitude we can neglect the
change of dimension and cross section form of filament in cal-
culating interaction force of the fluid and filaments and con-
gider the cross section of filament to be a cirecle of radius
Q . Taking into account all mentioned above we can write down
the follom.ng equation of bending oscillations of filamen‘t

2.:5‘ ? iy 23 T Z(BV 3_}_ E
?Jlﬂ- B‘L"‘-?E' e ¥ ?e a 2% 31‘.2' AJT Zz(?)

Let us explain the meaning of each fterm in right-hand side
of this equation: :vl - is the perpendicular component of mac-
rogcopic fluid velocity; the first term discribes the force by
which accelerating fluid acts on the tube placed inside it; the
second term is due to effect of adding maas*ﬁ) (see, for example

*) This condition is analogous to the Cherenkov resonance con-
dition in the theory of Landau damping.

**) It is easy to show, that ,8dding mass per unit length of
the tube is equal to ®a? Pe .

/4/); finally the last term is the returning force with which
the magnetic field confined inside the filament acts on the
filament., The equation (2) does not contain the longitudinal
component of the fluid velocity because longitudinal motion
of the fluid does not result in the interaction between the
fluid and filaments.

Speaking of macroscopic velocity of the fluid one has to
bear in mind that the fluid velocity in the vicinity of some
filament (at the distance of the order of Q) differs consider-
ably from the macroscopic velocity. This fact, generally speak-
ing, should be taken into account in calculations of the lat-
ter. However, the concentration of filaments being small, in
the first order approximation with respect to concentration
we can regard the macroscopic velocity as the fluid velocity
at the distances from filaments large as compared to @ Dbut
small as compared to L « That is what we have done in de-
riving equation (2),.

Using the concept of adding mass we assume that the fluid
ia incompressibles It is true since the velucitiea'3¥;/§t and
'vl are small as compared to sound velocity and the period

of long-wave oscillations under consideration is large with
respect to the eigenperiod of radial oscillations of filament.

Each filament is characterized by the radius Q , plasma
density inside the filament ©; (below we use the dimension-
less perameter rt-.:?u' e instead of P ), and the tempera-
ture of this plasma i < Generally speaking, these parameters
change from one filament to another.

For simplicity we assume that the plasma inside the fila-
ments is cold‘qji <KET1E , and, respectively, we neglect the
gas-kinetic pressure pi inside the filaments (this assumption
is not principal but allows ue to make all formulas not so
long). Then, in an unperturbed state,

where Pe is the pressure outside the filament and H is
the specific heats ratio. Thus, the equation (2) can be written
as
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Here and below we mark the displacement -{ by index rl to
ghow the dependence of displacement on rl i

We define the distribution function of filaments over the
parameters Q and N by the following formula:

do = f(a,n)dadn

where ciﬁ. is the fraction of volume occupied with filaments
with parameters @ and lying in the intervals
A R da AP FL L vl )« The normalization of the

function {: thus defined is apparently as follows:
Og 00

A :S Sdadrl {-(Q,rﬂ

v 008
Here o 1is the total fraction of volume occupied with fila=-

ments ( K ~ O,Z/L‘a(c‘i Jo It is also useful to introduce
the function

-

Co

Q= S {(a,n)da (4)
0
One can see from (2) that the force with which the fila-

ment acts on the fluid (per unit length of filament) is
— L B
AV,  d En)
ok 2 5

Accordingly we obtain for the force acting by the filaments
on the unit volume of fluid

~R A’ ( 2

- TR A
F‘-':"feS(E g;‘—aﬁ)%(“pdq (5)

Now, the macroscopic equation of motion of fluid can be repre-
gsented as:

Sje““f :-VS ?X‘;+F (6)

where Sf is the disturbance of fluid density which is con-
nected with Er by the continuity equation:

":'JZS? + Pedivv =0 (7

In writing down the continuity equation (7) and the first term
in the right-hand side of equation (6), we restrict ourselves
by the zeroth order approximation with respect to parameter :
X. , because the account of the first (and higher) order terms
leads only to an insignificant change of sound velocity. On
the contrary, the force F (which is also of the order of
o ) in the equation (6) results in the qualitatively new
effects connected with the bending elasticity of filaments,
Different from the known problem of oscillations of the
fluid containing gas bubbles (see, for instance, Ref. /5/}),
filaments compressibility is inesgential in our gystem. The
reason is that the compressibilities of filaments and of sur-
rounding medium are of the same order of magnitude in our
system.

3+ Damping of sound waves

The equations (3) and (5) - (7) constitute the closed set
of equations describing the linear oscillations of medium. Let
us consider the travelling wave type eigensolutions of this sys-

—
tem, i.e. let us agsume that “'.; g W and E? are propor-
. e 'l = e' —
tional to EXP(-Lwt +u<.r-). Expressing % in terma of V,
from equation (2), 3

- 2 L M-{?L
T -2 (8)
b= ok ('1*1) _EX-—‘I vi k2 o0
and substituting the result in equation (5), we obtain
. >
?‘-:L(-J?E -{;.l I(Hlk) (9)
'
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We take into account that disturbance must vanish at t— - oo
and accordingly we replace W by W+t0 in denominator of
the iht?grand.

The influence of magnetic filaments on the oscillations
enters the problem by the integral | which is of the order
of of and consequently is much smaller than unity. Taking
this into account it is easy to get the dispersion relation
from equations (6), (7) and (9):

« 3
et [1_ sund I(U,E)]

&

(for definiteness, we consider the solution with Rew >Q } I8
In calculating the integral | we can put the frequency

to be equal to the solution of dispersion relation for "pure"®
fluid (i.e. the fluid without filaments): W= KV . Further
it should be noted that the real part of I leads only to an
ingignificant correction to the oscillation's frequency, 80
that it is sufficient to calculate the imaginary part of s
Using the well known equality:

il ke

x+.0

it is easy to get the following expression for damping rate

= —Imw
- (Mo), N,>0
o »
v___KVSSLn_e IMI=J-{KV5‘SLHB{3 » )
2 ST 0, 1<0, (10)
2 cost
= -4
0f course, we could get the same result in a more formal way
by solving the Cauchy problem for the system (3) - (7) by means
of Laplace transform (in the same way as it is done by Landau
/6/ in the initial-value problem for Langmuir oscillations).

If we meke a natural asgsumption that the width An of the
region of those values of rL , where the distribution function

8

is esmsentially nonzero, is of the order of unity*). -then

(vtﬁ) ~ ok , and for damping rate we can write down the fol-
lowing estimate:

V/xvg ~ o (11)

Of course, this estimate holds only for those values of & ’

where I-l'} O , i.e. where cosd ::-(K/Q']vz. For monatomic gas

the corresponding region is quite narrow, O <anccos(5k)%2.5°,

80 that it seems to be essential to take into account the pos-
sible noncollinearity of separate filaments, Just this problem
is treated in what follows in this section.

The direction of a separate filament cem be characterized
by the unit vector ;'I* directed along the filament's axis.
Let us denote by h(ﬂ' ) the distribution function of filaments
over the directions. At the same time we assume for simplicity
that all filaments have the same radius and the same density.
Normalization of function h(R) ig the following:

oL = S h(F)d o

where o 1is the part of a volume occupied by filaments end
do is the element of a solid angle. The component of maecro-
scopic velocity perpendicular to vector n is obviously equal
to V-R(AV) . Accordingly, instead of (8) we have:
. 2 V-r(n V)]
T Wr(Aey) -2y v2@AY

In this case, since displacement apparently depends on filament's
orientation, we mark WE by subscript N (as to parameter 4 ,
it is assumed here to be fixed). By analogy with (9), the volume
force acting on plasma, can be presented in the following way:

Fo=lwoe K"P vP

?

where

*#) Thaet is, we assume that the substance density inside the fi-
laments chenges with respect to Q¢ not more than by several
times from one filament to another,



(W+10)*
Having this expression for the force and using equations (6)
and (7) it easy to write down the dispersion relation. Then,
taking into account the smallness of K“‘F we can find the small
imaginary part of frequency:

o KikpImK_‘F‘—‘Sdoh(ﬁ’)[i‘(Ei)z}g[iﬂ‘szJ

u;vs" 9kt \Afk”-

In an important particular case when distribution of fila-
ments is isotropic we have l‘l(ﬁ')-—"—-d/éijr and the expression
for demping rate is reduced to simple form:

v 2 oe.hr[f—\fu'*”[_)]

.
e

ok . Nyt +q)
(we imply that 1(2/{ =Y

Up to now, considering the equation of motion of a separate
filament (see equation (2)) we completely neglected the compres-
gibility of medium. It is justified by the smallness of the
oscillation's frequency () =KkKVs in comparison with V./a .
Account for the compressibility (that is account for the higher
order terms with respect to parameter {.Ja/\fs ~ KQ ) results
in a new effect: radiation of acoustic waves at bending oscil-
lations of filaments. The radiative damping of bending oscilla-
tions arising from this effect has a damping rate V., 4~ W Kzaf'
(see Appendizx).

The previous consideration is valid only if damping rate
of acoustic waves ¥ isg greater than VY, .4 , that is if

(a)s £x (12)

If this condition is satisfied, the energy of acoustic waves is
transferred into the energy of filament's oscillations during
the time of the urﬁfrfnf y'4 » Then, for a much greater time
of the order of ¥ _,4 filaments release their energy in the form
of secondary acoustic waves. By noting that the separation L
between filaments is of the order of GJ/J:: one can write

K"‘?: 25&0 MW)(S,‘F_—MP)% —(14. 1 - Kﬂv} (E'mi)-i‘j
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down inequality (12) in the form: Kkl < 1 . In other words,
if macroscopic description is valid ( K<< 4/ ), then in-
equality (12) is satisfied automatically,

One should note that, for calculating of small damping
rate of acoustic wave, the macroscopic approach is generally
speaking not necessary . It is sufficient to consider the
excitation of separate filaments and then to use the energy
conservation law for finding the damping rate of initial wave.
However, the above approach has the advantage as it better
permits to show the analogy with Landsu damping effect.

4. The damping due to the scattering
by filaments

In this section we elucidate the connection between the
Landau damping considered above and the damping connected
with the scattering of acoustic waves by filaments.

As it is shown in Appendix, the energy (1 of secondary
waves radiated from the unit length of filament per unit time
is connected with the energy density of initial acoustic wave
as follows:

Q:jg(nl,a.u)w' (13)

where

p=B.+2 2 B, (14)

=1
}u= %— %E- (Kcﬂ* (Sl-.lﬂzg - 'g_‘) )

_vs[ i) T—(msiné)"f" 0.°
=X Sean I\ T e

Qo= 2y (ry), b =k, /x
(w)

end VY,,} 1s defined by the formula (A.9).

For defineteness, we consider that all the filaments are
collinear. In this case one can express the demping rate of
primary acoustic wave due to scattering in terms of the coef-

R



ficient § and distribution function {(a,4) in the following
way:

(a
Yicoth ‘-"S Effi?‘ R(1,0,Q)dy dw 2o

The main contribution to damping is due to the dipole term
(m =4 ) in F. : the next multipoles (m =2,3 ... ) con-
tain the higher orders of small parameter xa , and in the
term m =0 , there is no resonant denominator. The resonances
in scattering are due to the existence of weakly demped natural
oscillations of filaments (see Appendix).

One should bear in mind that relationship (14) is obtained
for a strictly monochromatic initial wave. If one deals with
damped wave with damping rete ¥ larger than y__; (just
as in the case & >~>(K.O.)1 ), then it's obviously impossible
to have a frequency mismatch in denominators of ? smaller
than Yy °, and in calculating the contribution of scattering
(15) one should take into account only the regions where
lw- Q| 2 Y . Integration over the corresponding regions
of 1 gives the following estimate for the damping rate due®
to scattering:

Yscatt /KVS g (Ka}ﬁ/d (16)

It follows from the comparison of formulae (11) and (16) that
the scattering is negligible if condition (12) is satisfied.

Note that the damping rate of short waves ( Q <€ A <& L )
is completely determined by scattering: it appears to be smal-
ler than VY _,4 (see below), and this means that damping is
due to direct scattering of primary acoustic wave into the
secondary waves without preliminary accumulation of energy in
natural oscillations of filaments., In other words, for short
waves one has y = Yscatt * where Y t is defined by for-
mula (15).

As was mentioned above, one needs to retain only a term
m=14 in the expression for ﬁ + Since only a narrow region
of 'l (of width an ~Vd /W& A ) around the resonance 1“1"
contributes to the integral (15), one can replace 7[@’1) by

scat

12

#(ﬂ,"l,) o After this, integration over l-l and Q. can be
done easily resulting in the following expression which for-

mally coincides with (10):
Y :.'.vxntt =R KVSSLH,.Q%‘('lu}J rl{,,:ing/h’ -1 (17)

We imply that 1“ >0 ; in the opposite case the scattering
becomes nonregonant and damping rate becomes much smaller:

vwdz(wa)(ua\i .

5. Damping of monochromatic
acoustic wave

It was shown in the preceding two sections that the damping
of long ( 2\ >>» L ) acoustic waves is completely determined by
the effect analogous to Landau damping. The analogy becomes
especially complete, if one makeg nonlinear estimates related
to the problem of the damping of monochromatic acoustic wave of
emall (but finite) amplitude .

For defineteness, we shall speak of the case when all the
filaments are parallel to z-axis. Assume, that at t =0 the
acougtic wave with the amplitude of particles' displacement i:
and the wave number iE' ig excited 1n plasma. Let us congider
the motion of a separate filament in the field of such a wave.
For this, we use equation (3) presented in the form:

aa‘-‘_é' g — g ~» *;.(Jt
:31"{1 v (r[)‘g_z:—u 3, € (18)

where

Q) =k, v, VoAU, w=kv,
(for a while, we assume that the amplitude of the sound wave
does not change with time; this point is elucidated below).

#) In the theory of Langmuir oscillations the corresponding
estimates were made by Mazitov /7/ and O'Neil /8/; see
also Kedomtsev'e survey /9/.

33



Let's denote by Ko the resonant value of ?l that is the
value of rl for which ﬂ(il} =G . For thogse values of

which are sufficiently close to Mo the amplitude of oscil-
lations of filaments grows linearly with timé and becomes very
soon much larger than 3a (because of this, one can neglect
the initial value of ‘E"l which should be taken to be of the
order of Y , cf. Ref. /9/). The saturation of amplitude
occurs: due to nonlinear frequency shift (see Ref. /10/), which
we denote by ASA(%.) , where Y. is an amplitude of ¥,.
The i:'_trs-t nonvanishing term of the expansion of a..Q. in pcwer%
of \E"I. has a form 4,_Q,::- Arg: where A is of the order
of x: . For values of 1 which are closge to 1o » the
saturation level of amplitude can be found by means of a simple

relationship, following from (18):
> | 3L g
;“1 3 ('L"lv)“' A\gi\w‘glu (19)

Since )‘Q./asl wci (we assume that r'l. ~4 ), it is clear
from (19) that ‘E'l depends on 1 in the following way:
‘gl ‘ \ Al
) St T |;f?"' (\S.Lki‘ ’
:‘g" Ak L (20)

-3 o
\SL(‘(_LK}) ) l"’l""l,\,ﬂ(‘glkz)
(we have taken into account an estimate A~ k:' ) Since
the oscillation energy of filament related to its unit length
ig of the order of f’e a,."“ {1- R s using Eq. (20) we can esti-
mate the maximum energy W * which can be transferred to the
filaments:

'] ~a 12 i 2 3
W~ 0o 83(‘1)‘5141”91‘4 5 (55) g ~gi) g/ w

.2
where W~ fagw X is the energy density of the sound wave.
Noting that g(:lu]n-d_ » one can rewrite the last relationship
in the form:

14

" *
W¥YW ~ « (fv:/w) : (21)

This estimate solves the problem of the damping of finite amp-
litude wave (cf. Ref, /9/): at W/J:N:' > u{'a' the maximum ener-
gy that can be transferred to the Tilaments due to resonant
interaction of them with the sound wave is smaller than the
energy of the wave l1.e., in this case the wave can transfer

to the filaments only a small fraction of its initial energy,
and then the damping ceases. In this case the assumption of the
constancy of the amplitude of the sound wave is valid.

On the contrary, at W/yuf 0 e s the energy of filaments
remains small even after complete absorption of the sound wave,
and the damping is described by the linear theory presented
in Sec. 3. Consequently, the condition when the linear appro-
ximation can be applied to the problem of damping of monochro-
matic sound wave with initial amplitude Yy » has the form:
KY < cL‘Vi (22)

We neglect the nonlinearity of the acoustic wave itself.

It is known that this nonlinearity leads to distortion of the
acoustic wave profile and to formation of discontinuities
within the time T:’V(LjK'S\-1 « Cur nonlinear estimates are
valid if is large with respect to the time of damping of
the wave in the case (22) or with respect to saturation time
in the opposite case,

Note that, due to radiative demping of oscillations of
filaments, acoustic wave will be damped to extinction even in
the case KY > dvz' + However, the damping time appears to be
much larger thﬂn.'y'* o In this case the dissipation rate of
acoustic wave energy can be estimated as: —-‘\;f ~V,.ad W*',
where W is difined by the formula (21), and V., ] is radiati~
vé damping rate. Consequently,

; 4/
-—w ~ "p'_qJ W el (stL/W) ?

and we find for the damping time of an acoustic wave:

T WQ/V..QJ ) (W/pvd s v

)



We imply that \Jrq qun. gince otherwise the nonlinear effects
become ingignificant.

Appendix

Here we congider an exact theory of linear oscillations
of a magnetic filament taking into account the final compres-
gibility of external medium, For a plasma inpide the filament,
the linearized system of MHD-equations has a form:

W i1 1% e
?;3%3"43[\.%{“,}"'] ’ ‘)_i:‘"-"l'*n{‘.\’Hlj

--.&
_".
where VvV and F\ are the perturbations of velocity and of

magnetic field, respectively (we take into account the absence
of gaskinetic pressure inside the filament).

We use the cylindrical coordinates (v ,%9,2 ) and consider
the solutions proportional to E.Hp(—imt -ii.k.lz +i‘mtp) with
m=0,x1,*2,... . It is easy to show that for these solu-
tions '

=0

- K: V:' (1—::1: ;]z

®
Since we are not interested in the Alfven waves that can propa-
gate inside the filaments, we obtain from this equation that
% 9 (m Y
T V, = — Ao
V’l" a!_ : ] ‘_r o } ( )
where LP ig some function of v . It follows from the equa-
tions of motion that Vv, = O . Perturbation of magnetic field
can also be expressed In terms of l.l) :
h _ 3 ¥ ¥ i’t_ q)j z_ VAZ. T.J_". Y‘A.E)

e oo b W

-~
From the condition di’.v\\ = 0, one can obtain the following
equation for kP :

i iz
3 ) 2 Yvy b s
LL&-}%+(‘E-KE““‘F;)\P'O (A.3)

r ar
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In the region outside the filament,magnetic field is zero,
and the linear motions in this region can be described by the
equation for velocity potential }r ( V = -—V'X )s

2
%g_rra“ +(%}_k:_";é)’){=0 (K.4)

where V. is related to V, :
S 2
vtz ‘il . . (A5)

Perturbation of gaskinetic pressure can be expressed in terms
of } in the followlng way: |

EP':: -L—;lj- S’{y _ = (A.6)

~ At the surface of filament ( =aQ ), the boundary
conditions of continuity of the normal component of velocity,

v‘f‘\i o Vr\e 3
and of the normal component of the momentum flux,
Hh, /4% =8p

are satisfied. Using the equations (A.1), (A.3), (A.5) and
(A.6), one can reduce these boundary conditions to the single

one: 1(1-%‘&:21))’!“/}(#}}__

a* R
Ar b, -

(A7)

= 4 e

Inside the filament, the solution is proportional to the
Bessel function of the order m: Y ¢ Jm (CL,_ r} where
q,;_:(ul/vfab:: Y"‘". In the outer region, the solution should
have a form of a divergent wave: YC/.'} H.Y Lc‘,!br‘} , where
H& is the Hankel function of a first kind, and g, = (WAL~
- k}‘]w; Réqeb-ﬂ . Because we congider oscillations with
K, <<{, the arguments of J,. end H™ in the boundary
condition (A.7) are small as compared to unity. If one retains
only first nonvanishing terms of the expansion in powers of
these parameters , then one obtains the following dispersion
relation: :

2 4



W, =Ll = kv \/2/5 (1*1; (A.8)

B S h Tl - M. i, IR There 1s no radiative damping in this
approximation., Wote that there is no dependence of natural
frequency on m ( the bending oscillations correspond to the
dipole mode m =% 1), There are no weakly damping oscillations
with m = Q.

Generally speaking, at the interaction with plane acoustic
wave, the modes with m =¥r2,*3,00. are exited as well as
the dipole mode considered in Sections 2, 3. However, their
amplitudes are very small (the reason for this is that in the
expangion of a plane wave over the cylindrical multipoles the
amplitude of the mode with some m in the vicinity of the
filament is proportional %o Ucafhi}.

1f we retain the next term of expansion over xaq in the
boundary condition (A.7) thie will result in: 1) small cor-
rection to the real part of fregency; 2) appearance of radi-
ative damping. For brevity, we present here only the formulsa

for radiative damping rate mL:j
{m) e iy
Yead A% - (ﬂ)ﬁml . _1-}l l (A.9)
QL bld (=AY 1(249) N 2 Yy

Let's consider now the scattering problem. The plane acous-

tic wave of unit amplitude has a form:

’)l: -%-exp (—fk)l:*l:f‘r?) + C.C. (4.10)

where W=KV, . In the presence of magnetic filament the
solution outside the filament will be superposition of this

plane wave (which can be represented in cylindrical coordinates

i * " i - » 3
as Eeup(-i,uhmii+%¢rmq)+cﬂ and dlvergent cylindrical waves?

it - \Q ,rem okt A L
B [T &5 RS the

oy = =

Ingide the filament the solution has a form:

18

\.P & e_iut+ (k.2 Z B I..,.‘(%;.*‘)Eth“f%-cic_

m=—0g

using the identity

T T (g™

M=-00
and writing the boundary condition (A.7) for each azimuthal
harmonic m we obtain the following expression for the coef-
ficients AM

i

)0 K o) g -g: ) (49

Taking into account the smallness of parameter ka we can
represent Am for ya>0Q in the form:

- § by kasinb i L 2
9.(1+1)m!(m»~'1)! 2 L.J—,_(lﬂw:_::i} """A"“
whereiflfj) is defined by the formula (A.8). Getting this
expression we have taken into account that A, is essentially
nonzero only at w=~,Q, and that is why we replace ¢y by L),
everywhere except the resonant denominators. In the wave zone
at qvc‘r::ai the following-asymptotic formula is valid:

(4 7 : MR A
H' (g r)x \/J‘_%r axp{u(%*‘*%'{‘\}

Here, in small regions of space the divergent wave can be
considered as a plane one. This allows one to find the den-
gity of radial energy flux in the m -order mode:

A=~

C‘,h“; lAh}lva; K/7 -

The power radiated into the wm -th mode from the unit length
of the filament is <IN r Qw » Taking into account that the ener-
gy density in the incident acoustic wave (A.10) is ?*.;;?' /2 we
get the relationship (14) with

Rzt ALl /e ”
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