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: Nonlinear mechanics
of atomic motion in molecules.

E.V.Shuryek.

: Abgtract,
The long time evolution of molecular vibration for both

free molecules and those in the intense electromagnetic field,
resonant to one of the modes, is discussed. The interaction
between modes causes the decay of the initial excitation of
one of the modes to others via the intermode resonances. The
1ife time of the excitation is strongly dependent on the dis-
tribution of Buch resonances and a number of thresholds is
ﬁredicted as & function of molecule nonlinearity or the exter-
nal field intensity. The trensition to complicated, gtatisti-
cal behavionrMotion is studied and the boundary of this re-
gime is found. In this regime molecule cen gain energy from
the field up to its dissoclation. Some applications of the
results to explanation of the data on collisionless digsoci-~
ation in laser pulse are presented.



1. Introducti
The problems we study in this paper are connected with

the description of the atomic motion in molecules during
the time which is much larger t{han the oscillation period
but small compared to the collision rate. We discuse both
the evolution of the initisl excitation and the behaviour
of molecules in the resonant electromagnetic field.

For such problems the traditional small vibration approxi-
mation or the linearization of the equation of motion can not
be used. The nonlinear terms, although small numerically for
not too large excitation energy, are crucial for these pheno-
mena., The fact that the long time behaviour of the nonlinear
systems is qualitatively different from that of the linear
ones and the divergency of the perturbation theory in such
problems is known for a long time. For example, under certain
conditions the nonlinear systems behave in a very complicated
and quasgistochastic way, so that the initial excitation becomes
equally distributed over all degrees of freedom. In other words
the disgipation inside the molecule (without collisions) is
possible. The similar behaviour in the oscillating field le-
ads to increase in the molecular excitation energy up to
colligionlegs digsocistion , resently discovered experimental-
1y /1/. As is shown in /2b/there may be even ionization. The
selectivity of such phenomena causes very interesting applica-
tions. One may think that with the progress in luser techmi-
ques and in our understanding of the nonlinear mechanics of
the atomic motion the active control of the chemical reaction
mechanism will be possible. But not only applications of these
phenomena are important, but also they are of great theoretical
interest for they are the example of the transition from the
dynamical to statistical behaviour in systems with finite num-
ber of the degrees of freedom.

The intensive studies of these problems in many oscilla-
tory systems - The Solar system, particle accelerators, plasma
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oscillation and essentially the numerical experiments with
nonlinear chuains /6,7/ long ago initiated by Fermi, during
the last years made gignificant progress in our understand-
ing of such phenomena and now the general picture of the
n-dimensional motion is somehow clarified./8/. The present
paper is essentially based on the ideas and conclusions of
this theory. As far as we know, this is its first applica-
tions to the motion in molecules.

The oscillation of the twoatomic molecule, which has
only one vibrational mode, in the intense resonamnt electromag-
netic field is just the problem of the nonlinear resonance,
well known in the classical mechanics, see e.g. /9/. The dis-
cussion for the molecules in particular, but in classical fra-
mework, is made in /10/, where also the role of rotations is
studied. In the author's work /11/ the problem is treated in
guantum case. It is shown, that the variations of the oscil-
lator amplitude are quantized themselves. For the calculation
of the quasienergy /12/ spectrum and the corresponding wave-
functions both the perturbation and the quasiclassical methods
are developed. The latter one is used in chapter 2 in the die-
cussion of the twoatomic molecule behaviour in the resonant
field. In particular, the interesting phenomemon of "tunnel-
ing" between two possible classical solutions is possible.

The evolution of the molecule excitation has been studied
by meny authors in comnection with the so called monomolecular
reactions or the spontaneous dissociation of the excited mole~
cule. For their description the Slatter theory has been propo-
sed /3/, in which the energy transfer between the linear modes
is neglected, and also the statistical model of Kassel et al
/4/ in which on the contrary, the intermolecule relax:ation is
assumed to be sufficiently fast. The numerical /5/ and also
gome "real" experiments have shown that for molecules larger
than threeatomic ones the Kassel theory works well, while fo=z
the threeatomic case some anomalies are observed. But yet these

s

calculations present no clear explanations of the results and
the understanding of the validity regions of these theories.
The interaction between modes we study in chapters 3
(claseical description) and 4 (quantum case). Suppose we ex-
cite initially only one of the linear modes. How this initial
state will " decay" into others and how long time it will
need for 1t? The answer to this question essentially depends
on the distribution of the resonances between the given mode
end othersnd also on the strength of the coupling between -
moded8. This dependence is not trivial and contains a number
of thresholds at which more and more strong resonances become
effective. Such phenomena have been slsc observed "experimen-
tally" in numerical studies of the nonlinear chains /6,7/.

The maniatomic molecule in the resonant field can effec-
tively gain energy from the field only if it can be tranafe-
red from the excited mode to others. So the poseibility to
observe at rather low intencity of the field of the collision-
less dissociation also depend on the distribution of the in-
frmode resonances. Because of this also the thresholds as a
function of the field intensity appears. In chapter & we ea-
timate the thresholds for several molecules and are able to
explane why for B  0s0,, SFg this dissociation hes been
found and for {CS,CCy not in experiments /1/ with the in-
tensity not exceeding 10 Wtfcmz.

In chapterse 3,4 we describe the initial stage of the
excitation "decay" via the unstable resonances. The further
evolution of the system becomes complicated and its detailed
description is difficult. But for large enough energy of the
excitation this process finally becomes so complicated, that
the statistical description becomes possible. These questions
are discussed in chapter 5. Based on the so called Chirikov
criterion of stochasticity /8/ we find the stochasticity boun-
dary of motion in molecules, separating the regions of the dy-
namical and statistical behaviour. One of ite consequences 1s
the explanation of the above mentioned facts about the monomo-
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leculer reactiona. The other particular result is the estima-
tion of the amount of energy gained by one molecule per one
lager pulse. The result seems to agrfee with data /1/ in magni-
tude and dependence on the field intencity. :

In the works/2/ the following explanation of the colligion-
leps dissociation has been proposed. In manyatomic molecules
the density of states increase rapidly with the increase in
the excitation energy. So with the account of the finite widih
of the rotational band they are mixed into quasicontinuum of
states rather soon. From this the conclusion is made that the
cdhequant abgorption of quanta is possible up to dissociation.

This explanation seems to us completely insufficient. This
is eclearly seen slready from the fact that the nonlinearity
of the systenis not at all involved in i%, while in the absence
of the coupling between modesgithe large density of states is
of no use since the dipole matrix elements into these states
are equal to zero, And indeed, the experiments with the nonli-
near chains found long time stability for the small nonlineari-
'ty case, that is no energy gain. The rotation of the molecules
in the absence of collisions can non help, for the states with
different angular momenta carn not be mixed. In this respect
the rotation is just like the transletional movement: it makes
the spectrum very dense, continuous, but it does not help for
quenta absorbtion.

Our consideration also leads to the conclusion, that at hipgh
enough excitation energy of molecule the separate modes collaps
into quasicontinuous spectrum and that in this region the
quante absorbtion is poseible. But the condition for all this
to take place, which is just the condition of the stochastic
behaviour we mentioned above, is dependent on the intermode
interaction and therefore is essentially determined by the
nonlinearity parameters. The phenomenon of the infinite
excitation in this regime is called the stochastic instabi-
lity and is known in several systems.

5=

In the end of the introduction let us say, that since we
apply the ideas and terminology developed in the fields oth-
ers then the molecular physics, we concentrate our attention
to the explanation of their physical meaning. Therefore the
presentation of the materiel is somehow simplified in mense
that the particuler examples and numerical estimates are
presented rather than the formal derivation of the general
formulae. We hope that thieg way is better for the understan-
ding end further use of the discussing theory.

2. Twoatomic molecule
in resonant field,

In this work we treat. only the vibrational mode of the
molecule and thus reduce the problem to that of nonlinear
oscillator with the resonant exciting force which is studi-
ed in gquantum case in the work /11/. The rotations of the
molecule do not play an essential role in the problem, they
cun be tiken into account by the change of the effective
nonlinearity as it is done in /10/.

The usual and the best studied case for atome and mole-
culeg in the extermal oscillating field is thut when only
two levels of the system are espentially involved in the
transitions while the others are out of resonance., The mo-
lecule vibrations is the exception: for in this case the an-
harmonizm is small and for high enough field amplitude many
levels can contribute. This is the case we are going %o dis-
cuss, for in it rather simple and transparent quasiclassical
method can be used. It is discussed in details in /11/ and
we do not repeat its derivation here, Let us only say, that
it felude as a first gtep the transition to such wvariables
as the resonant phase o= §- 2% where 4G  1is the angu-
lar varisble of the oscillator , f? is the frequency of
the field, and to action variable T conjugated to of .
The second important step is the consideration of only reso-
nent part of the field influence., In th-is approximation
the rescnant Hamiltonian becomes time independent and its
quantization give the quasienergy /12/ spectrum of the prob-
lem. The general form of the resonant Hamiltonian is
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H(r.4): H(1)- 2T+ w(z,q) T

where H,(I) is the unperturbed Hamiltonian of the os-
cilletor, U(T,4)is the resonant part of the perturbation
which depend -on time only through o , J2'I is the
"ecentrifugal" term for we are in the rotating frame with
frequency 5S¢ of the force. In /11/ mainly the case is
considered when the width AL  of the region where U(TJ)
is important is small compared to the action resonant
value I,

=

Win)z Z0L)= S, 8T« T, (2)

so that (1) can be expanded near ] 6  and simplified

o ™

’ 2
H(T,4)=x %(I-Iﬂ)ﬂ U, )+t 'z i;’(:o} £

As this Hamiltonian hag the form of the sum of kinetic and
potential energies its quantisation meets no difficulties.
But thies simple approximation can not be usged if T =~ 0,

This is just the case,for the molecules are excited in rea- .

1ity from the ground state. This circumstance do not change
the principal ideas of the method, but mekee 1% more diffi-
cult to obtain results in the explicite form. Therfore we
discuss this case separately here,

In this connection let us note, that in /10/ the equ-
ation of motiom: for action is reduced to the potential form
T =-dV(1)/dI . But the potential V/(I) depend on the
trajmtur:r iteelf and therefore can not be used for quanti-
zation.

In the case of molecule excitation by resonant field
the resonent Hamiltonian (1) may be parametrized as:

'-?-

H(I,ot]: E-X+ -‘;—”Iz + £V cosa )

where £:0p)-? i the frequency shift with the first transi-
tion, c’=d%,()/d1*is the nonlinearity of the mode, the con-
stant f:-=¢£%//% where €X ig the dipole matrix element
of the first transition V=0~ v:z1, £ 1isg the electric
field of the wave.

The dynamice, determined by this Hamiltonian, can be
understood in the more convenient way with the help of the *
so ¢alled phase portrait or the picture of the equipotenti=-
als on the phase surface. There may be different pictures
depending on the parameters, in Fig.1 three main peseibili-
ties are shown: a) &> &, =..,§_ (m’f“;fZ)% ke AR T
¢) £<0, w<0 , One can see for example, that the rapid tum
in of the field with the initial condition T:=0 in case
a) leads to the trajectory AB with E =0, There is also
enother trajectory in this case with Ez0, ¢ , but in
order to occupy it one needs, for example, to begin with the
case ¢) and then chenge adiabatically the frequency of the
force. The existence of two solutions is well known in the
classical case, see e.g. /9/.

Proceeding to the quantization let us note, that no me-
thed is known for Hamiltonians with arbitrary dependence of
coordinates and momenta. This problem is not even strictly
determined. But in the quasiclassical approximation (we are
interesting in) no difficulties arimse. for all derivatives
act only to the strongly oscillating part of the wavefunc-
tion and thus "commute" with other functions of the coordi-
nates. In /11/ the o - representation is used which is sho-
wn in several examples to lead to the results fast. But in
our case the I- representation is better, in which the
wavefunction is the superposition of the solutions of the

type

2 S e ¢
Wi(1) 2 exp [';-j"{;f (1) dI’] (5)
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where a{# (1) are the solutions of the equation E =
= H(I, dy):
; = - a2 :
at,f z ar ms(E e1- ¥1 ) ' (6)
- P
The number of these solutions with real o,y can be seen

from Fig.1. For example in the case a) p!,f is real in two
regions (I,I,) , (I3,I,) while in others it is complex.
Thege two regions are of course the itwo classically accessi-
ble wvalues of T . In quantum case these iwo solutions
are not separate for the "tunneling" through the classically
inaccessible region with probability

Iy
W = exp Z— -f- _g Im-dﬁ{ {1’)9{?] (M

is possible., The quantisation condition as usual e the dec-
rease of the wavefuntion to both limits I-=0,00 . If we
neglect the "tunneling™ terms in spectrum, than the quanti-
zation condition is just the familiar one: the area between
E.., end E, equipotentials is Plank constant. As far as
the quasienergy_upactrum and the wavefunciions are found,
the decomposition of any initisl state can give its evolu-
tion at any time moment.

Note, that near the dissociation boundary the appli-
cebility conditions are violated(of the used approximations).
In this region the frequency of the oscillation becomes emal-
ler and the nonlinearity increasges, s0 the nonresonant terms
becomes also important. In this region the stochastical layer
exigts which we do not discuss for 1t is analagous to that
near the separatrissa discussed in /11/.

What are the new. featlres which sppear in the quan-

tum approach compared to the classical one /10/ ? Of course,

in quasiclassical aproximation many results, for example the

=

dependence of the oscillation amplitude on the field value,
are identical. But the discreteness of the quasienergy
levels is due to quantization, it leads to the emitience
and abesorbtion by the molecule in the field of new frequ~
enceg -ﬁlem:ﬁl-g; corresponding to transitions between dif-
ferent quasienergy values. As 1s shewn .n /12e/ this can be
true up to addition of imtveger muliiple £J2 . Note, that
such new frequencies depend on the field intencity, so the
phenomenon cen be used for the creation of the fast modula-
tion of {the basic frequency.

The number of the quasienergy level is the adiabatic
invariant in the changes of the frequency. So our descrip-
tion is very c¢onvenient in the discussion of the adiabatic
frequency change proposed in iy

And finally, the found "tunneling® to the higher o8-
cillation level ig purely quantum phenomenon. Formally spe-
aking this makes the molecule dissociation possible at any
field intensity but exponentially small in probability. Still
it is useful not to take £=0 but its negative value. ac-
cording to our estimates this may decrease the intensity of
the field, needed for effective molecule disspeiation, in
several times, or even in order of magnitude.

3. Interaction between modes.
Clessical treatment.

Let us remain in the framework of the small vibration
approximation and write down the Hamiltonian es an expansi-
on over small displacements of atoms from the equilibrivm
poeitions

(int.) (en.¥)
+.

H (8)

H=IHY £3ex + TH™: H

B “he
Here Hf': K§+Lftf)/1 , the dlagonalized quadratic part,
or the sum of the energies of the linear modes. The second
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term is dipole interaction with the electric field, then
the nonlinearities of the separate modes H{"&)_ py2, px¥,

b . 7 e
end finally the interaction between modes

(nt ) (3) (n)
H sl N YT g + e B (9)
in which we are mainly interested, and the nonlinear cor-
rections to the interactions with the field:

Hfr.ﬂ.f.i: E-[%—&’Im e ] o

iy e 2

Ag far as ¥X; are small, the last three terms in (8)
are also small and irmany cases, say in Mandelshtam-Raman
scattering, they can be considered as perturbations. But
for rather long description of the motion the perturbation

series are divergent because of the intermode resonances
L
Z W w: = 0 (1)
=

( W, are integer) which cause slow time dependence

of the terms in Hamiltonian 1like X*...X, . Such terms
although small lead to accumulating with time effects. For-
mally this reveals as "small demominators" in perturbation
theory, see e.g. /14/. A.Poincare has called this problem
"the main problem of the dynamics".

We are going to discuss this problem not for infinite
time, but for time limited from above. In this case the ef-
fest of most resonances can be neglected. The initial stage
of the decay of one initially excited linear mode which we
are going to discuss, may in fact be made with the account
of only several and more often with only one leading reso-
nance. The opposite case, when many resonances determine the
motion, will be discussed in chapter 5. This discussion, on
the contrary, is limited in time from below.

Thus we assume some mode number 1 to be imitislly ex-

cited end thebe exist some closest resonance between its
frequency £J; and the others. To generalize this case
to arbitrary initial state is simple.

Our first example is the three frequency resonance
Ly x Wy+u)e For ite sccount only one term in the Hamilto-
nien of the interaction, nemely A%} X, x,x; , is needed.
One can gee, that in this aproximation the initial zero va-
lues of X;,¥%,, ?E; : i, leads to their zero value for
all times. But as we shell see, such solution may turnes out
to be unstable, that is the small initial conditions will

then increase. Considering ¥X,, X3 to be emall we can
neglect its nonlinearity and also their influence on X, ,
so that X,(+) = is taken as a given external excitation.

The solution of this problem we shell find following
the general %heme, from the action-angle variables I, TI,, 6, .
64 of oscillators 2,3 we proceed to resonant phase
o= 6,+6,- 6 (t) and accompaning variables B=E,-6s
I, - (I,+1;)/2 ; I (1,-1,)/2,; ¢=,+)-0 We omit this simple
calculation end present the resonance Hamiltonian for this
problem: (1= Ay X, %, X, VI, /%% )

H(T, I, #)=(@w)T,+ I, + u/Ii-rieesd | (12)

Since in this approximation I, 1is conserved, it is just

equael to its initial value, that is to zero. As the result,
the problem is rather simple and the solution of the m—
tions of motion can be explicit 1y found. The solution beha-
viour depends on the relation between & and U . If
the former is larger, solutions are some vibrations of 1limi-
ted amplitude. In the opposite case médes 2,3 increase and
gain energy from the mode 1. The large time formula is

L (#)= Lto)-expffuie- ¢ ) i 1)
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0f course, in reality for t= o0 our approximation is
not valid and the amplitude growth of modes 2,3 will be
limited either by the nonlinearity, or just by the amount
of energy in the initial excitation of mode 1. Note, that
the result (13) is sufficient for the explanation of some
of the numerical experiments /6/ with the nonlinear chains.
The obgerved "induction time"™ of the instability is Just
the time needed for exponent (13) to grow from the computer
zero 1o the level of the order of umity.

Now let us proceed to discussion of the more general
resonance with several frequencles: (J, = (U, + ... + J,.,.
The corresponding resonant Hamiltonian is

e

-1 e .
H= eI, + V-I, = cosdl c VEA XX, I:éi-. 7(14)

Its instability region is more complicated than for (12),
and again the phase portrait ( Fig.2) is useful. For wm>3
the large time solution is of the "explosion" type

£
T, (+): I,6)[1-2¢] ™" a: e i 5(15)

and turns to infinity in finite time.

It ig important, that the net of resonances is dense
at eny point. But with increase in the order of the reso-
nance its amplitude decreases rapidly eand the instability
time eggentially increases. Thie situation leads to the re-
sult that the most effective decay of a given mode 18 caused
‘as & rule by one resonence close enough in frequency and in
the same time not too weak. ‘

These conclusions can be easily generalized +o the
case when the mode 1 is under the influence of the external
field. As is seen from Fig.1 it leads to periodic modulations
of the phase ol s 30 in its spectrum apart from harme-

nics of &Jy aluﬁhe harmonice of the frequencies of thes

modulations sz_ + Important , that with the increase of

-1 3=
| 43

the field +this frequency also increases as J?f ~ Q .
This means that the width of the spectrum of mode 1 increa-
seg and <finelly it getginto the instability region of some
gstrong resonance. Thar'fura the dependence of the decay rate
on the intensity of the field haes u nmmber of thresholds
in which this quantity rapidly increases. In numerical expe-
riments /6,7/ the analogous phenomena as & function of the
coupling constant have beemn observed.

4, Interaction hetweun modes.

yuantum treatment.
The standard way to solve the problem of some state evo-

lution in quantum mechanics is to find the stationary stmtes
of the gsystem and expand over them the initial conditiom-.

Note, that this method has no time limits. But although thie
method ie good in prineciple, for systems with géwérml  deg-
rees of freedom it is not easy to find the stationary states.
This can be seen already from the analogy with classical case,

and the difficulty also is cabed by resonances, which f¥bid
to use perturbation theory even for small terms in Hamiltoni-

an (9). Indeed, the condition T W;&i=0 means that if
one chamges the quantum number of mode ¢ to . , then
the total emergy changes very little. In other terms, reso-
nances mean the degeneration of states and the part of the

Hamiltonian, say Inﬂu.!:f in this case, which has metrix

1
elements between such states, camse large mixing. The exam-
nle of thi®# kind is the famous FPermi resonance in 002.

But if we are only interested in limited interval of +i-
me, then toe small resonant. terms are net important and omly
the most essential ones or evem one resonance can be conside-
red. Note, that from formal polnt of view this "cut off" Ha-
miltonian .has rather interesting sense. Its eigenfunotions
are not stationary and even not close to them, but are appro-
ximately conserved during the limited amount of time. Such
quagl integrals of the motions are known in classical mecha-

nios,
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Begin with our first example, the three frequency resonan-
ce W, x ¢J; + &; « In the linear approximation coneidered
in chapter 3 this case can be quantize easily for it turms
out to be identical with the problem of the parametric reso-
nance of the linear oscillator, studied in. quantum case in
works /15/. So we do not discuss it in details. Let us only
say, that as usual in problems connected with linear oscilla-
tor, the quantum results do not differ much from the classi-
cal ones, In particular, the ingtability condition is the sa-
me and also the low (13) of the instability growth. The essen-
tial difference (also of general character) is the fact that
ingtability can grow from the ground state as well. Let us '
present here as an example the probability of the traneition
from the ground state to ¥,z Uy /15/:

J‘Tg"- ¢ £2sal (Ve 1)

. @w)!
Wh g g’-f:!da*f'& E{J—'" f} {16}

:f“{ 1y

which in the unstable region for large time becomes (w>>1 ).

M{t expm,'!_ﬂf} (17)

vorm 0 B 103
The comparison of (17) with the classical one (13) allow us

to say that the instability begins due to zero quantum fluc-
tuations. The simple quasiclassical treatment of such reson-
ance can be found in /11/.

The quantisation of the MW - frequency resonance can be
made in quasiclassical apprnﬁimaxiﬁn in the same way as in
chapter 2. The resonant Hamiltonisn ie (14), and the phase
portrait is shown in Fig.2. The new feature is the fact that
in the instability region the quasienergy region is continuo-
us. The following method can be used in this case. The emall
nonlineari%y makes the spectrum discrete, but the results for
initial period do not depend on the nonlinearity. This is equ-
ivalent to standard method of considering systeme in large

I ¢
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box 1in discussing problems with continuous spectrum.

Another feature of quantum treatment is that even in
quasiclassical approximation the amplitude of the mode 1 can
not be consgidered as some definite function, but ensemble of
such functions with properties representing the quantum state
of mode 1. Por example, the N-th stationary state corresponds
to Lf nt and homogeneous phase distribution. Interesting,
that for results (16,17) it ie not important for they do not
depend on phase. But for more general case(14) even the insta-
bility condition depend on phase. The ensemble averaging mekegs
the procedure more complicated. The detailed calculation will
probably needs the numerical methods and therefore is reasona-
ble only in particular example.For our estimates to be given
below our qualitative discussion is safficient.

When the molecule is under the permanent influence of the
external field the spectrum of exciting mode 1 contains frequ-
encies 'hﬂ}ww‘z §;1—E1 , transitions between quasienergy le-
vels. Thesefrequencies are quantum analog of classical phase
variations. They also make the spectrum of mode 1 wider and
this lead to instability thresholde as a function of field
intengity.

5. Stochasticity.

We have discussed above the initial stage of the decay of
the mode, when only one resonance is essential. What happens
later ?

In principle, at low excitation energy, the excitation of

other modes will be stopped and only more complicated periodic

motion will take place and moat of the modes will not be exci-
ted. But usually excitation of new modes leads {0 new resonan-
ces and so on. Note, the number of resonances increases also
becauge those h = ITU; W with negaﬁive 1, become
possible. Clear that the motion becomes more complicated and
it is dirficult to give its detailed description. But under

certain condition this process goes so far that statistical
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methods of ite description becomes possible., This question
has been studied with the number of models in /8/.

In the chapters 3,4 one important aspect of the interac-~
tion between modes has not yet been considered, that i® the
nonlinear frequency widening. For example, our resonance is

W, = Wh+w; « We considered :X,(tas a given function neg-
lecting the backward influence of ¥, ,X; to X,. This results
in gome extra phase vibrations of mode 1, eimilar to the dis-
cugsion in chapter 2 for the external force, and the width of

(Jy Dbecomes:

e () (h TR

where E;.ﬁ ie the average number of gquanta in modes 2,3.
With growth in excitation level W= quantity o) also
inereases snd when they reach the distances between rTesonances
in the system [, the whole spectrum becomes continaous. This
is just the stochasticity criterion by Chirikov /8/ which
gives the applicability comndition of the statistical methods.
It is shown in /8/ that this condition is the same for reso-
nances of any order, sc we may discuss only three frequency
resonances. The digbtance between such resonances A &%Xﬁﬁ&
where ¢J, ig some characteristic frequency:and AQ: im

the number of such resonances with mede 1. Clear that ﬂ&ﬂ—AQE
where N’;: ‘18 the number of frequencies in the system. Us-
ing these estimates we find the following condition of stoch-
gaticity of molecule vibrations:

- % A
o> fl) hu 1, 40T
(R -3 3
T L
The laat expression curruspon&ﬂ to typical values hw'/eh ~

w , 13313/#4,! it 40‘1
This estimate is rather crude approximation, but still

gome important conclusions can be made on ites basis. For

i =

example, at excitation energy of the order of several elect-
ron volts ( energy of dissociation ) molecules with number of
atoms larger than 4 lies according to (19) in the stochastici=-
ty region. This gives the explanation of the observations, that
statistical theory by Kassel et al /4/ gives resonable descrip-
tion of monomolecular dissociation . If nonlinearity of mole-
cules will be emaller, the result will be different. For three-
atomic molecules (19) is not valid, and indeed in calculations
/5/ it was found that the distribution over Lifetimesis not
gimple exponential, but can be more complicated. It means that
no true relaxation took place and the energy is distributed in
molecule in some complicated way, but not complicated enough
for the statistical description.

We do not discuss the kinetic stage of the intermolecule
relaxation and proceed to more interesting case of the molecule
in oscillating field. If the molecule is in the stochastic re-
gion, than due to interaction with other modes the phase of the
excited mode 1 becomes random. The phase of the field is regular
but only the phase difference determines whether energy is tran-
gfered from the field to molecule or vice versa. So the system
behaves as the regular one in random field which is kmown te
lead to average increase of energy. Such behaviocur is lmown
as the stochagtic instability in various oscillatory systems.

This phenomenon cen be described in the following way. The
motion of any mode in the stochastic region is determined not
by one leading resonance, but by meny of them simultaneously,
lying inside ite nonlinear width AlJ; . So the Hamiltonlan
cen be written as a sum over such resonsnt terms

{(tut :
H j Iffz g’;; Cﬂs(ﬂ;‘aﬁ) (20)

In the absence of this I{f“*J the quasienergy is conserved
or |_:_ given by (1) ramainn unchanged. With the account of (20)

% =1, (&-qm)j F...ﬁn(ﬂ*ﬂul 3 ""E 7 2 F,sub. ko1
h
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The first term in (21) describe the intermode relaxation,
while the second the interaction with the field in which we
are interested. Suppose @, are random, than the average
chenge of E is zero. But its squared value increase linearly
with time :

CAE" > = DIE)- T (22)

It means that energy growth is irregular process like ordina-
ry diffusion. The quantity (F) in (22) which can be called
the diffusion coefficient, can be found in a way similar to
that in /8a/ which we do not describe here, with the results

@(E):%(ex,EJEJ{Q); 94004 & _F_(;Ii)_j_? (23)

The quentity J/J2) which enter in (23) has rather simple
physical senge: it is the spectral demgity of perturbation
(20) sacting on mode 1 from all others. The knowledge of the
diffusion coefficient (23) allows to describe the quasienergy
increase by Focker-FPlank equation

QPEL) . 2 ? '
__g"“)- 5 Q]@J@E-P(E:‘{) : (24)

Finishing discuseion of stochasticity in molecules let
us note that since our congideration in this chapter 1is
classical it is limited by obvious condition k21 . It is
clear that at large enough number of modes similar phenomena
may exist also at Hh << 1 but thie case is not yet studied.
We also want to stress, that statistical methods, in particu-
lar well lknown in molecular physics equation (24), are used

in essentially new situation: there is no collisions (heat bath)

the extermal field is regular and not random. So the statisti-
cal element in the problem appears only due to complexity of

the intermolecule motion.
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Ba Collisionless dissociation
: in resonant field.

This chapter contains applications of our discussion above
to the phenomena of collisionless dissociation and to compa-
rison with experimental data /1/.

The possgibility of dissociation is determined by the fact
whether the sufficient amount of energy can be given to mole-
cule during the laser pulse. This, according to discussion of
chepters 3,4,is  first determined by the distribution of
resonances near the frequency of the excited mode.

Let us first estimate what kind of resonances we need in
experimental conditions. Amplitude of some term in interaction
Hamiltonisn (9) AW x™ let us estimate as a4 ™2

where (J, 1is some characteristic velue of frequ-
ency and A is some constant which lies in region 0.,03+0.1.
The pulse durationvis of the order of 10'? gec S0 One may con-
clude that resonances with W > mMz6+T can not effectively
work. and can be neglected, fox A™¥2 « 1/6,7).

The distributionas of intermode resonances in molecules
f?fS; B, EC‘F?: 0s0,, SF¢ » studied in experiments /1/, ie
presented in Fig.3. The frequency vaelues are taken from book
/16/ and unfortunately its precision is in many cases not
sufficient for our geoal. In figure also the index of resonan-
ce m 1s given, that is the number of frequences in reso-
nance condition. It easy to see, that with increase in number
of atoms the density of resonances rapidly inereases. This
effect will be even more pronounced if less simmetric molecu-
les be considered, for simmetry causesessential degenera-
tion in frequency spectrum.

The threshold of the excitation of a given resonance
corregponds to such intensity of the field at which the nonli-
near wi_&eniné:f the mode frequency AW Treach the imstability
region of this resonance. Taking A ~{.2’-"}ﬁ{ei'£)* and distances
between (J, and IN;W; .~ from figure 3 we find the follo-
wing values for threshold field intensity: (05- /07 Bee, -
403; C{:E? - H]ﬂl = 05-0:', - fﬂq : SFE z 3‘!#3




D

in unitee wt/ cm°.

Thies estimate at least is able to explane why in experi-
ments with maximal intensity of the order of 10° wtfcmz the
dissociation of B , (Js s BEEEER < was observed and of
Co0S , Cky mnot. But the accuracy of the threshold value is
in fact rather low.' First it is just due to low accuracy of
the used values of frequences. Second, we do not take into
account the exiastence of several branches of some modee, which
are due to molecule symmetry. In some cases this may be impor-
tent and essentlially decrease the threshold. An example is
5FE molecule, the exciting mode V; has three branches
and as it is noted in /1e/, the "triple" resonanse with the
field is possible, that is the compensation of enharmonizm
by the transitionto other branch.

Cur estimate of the threshold is based on "classically
allowed" mechaniem. But due to quantum "funneling" to the
stochastic region also some "tail” below threshold must be
pregsent. It can algo be essential in decreasing the experimen-
tal threshold, It is interesting in this connection, that ac-
cording to estimates in chapter 5, the stochastic region in
such molecules a8 SF; lies very low, at excitation energy
of several quanta. This coincitdes with estimates in /2/, but
of ceurse the coincidence is purely excidental.

So due to dispcussed effects, our estimate must be congi-
dered as estimate from above. And indeed, for SF, it was
found to be 2.3-107 wtfcmg for »; /1e/, one order of magni -
tude smaller than the estimate. In order to make more accurate
calculation a lot of spectroscopical information is needed
which is not yet aveailable, at least to the author.

Since the final stage of the molecule excitation to di-
sgociation takes place in the stochastic region, formulae
of chapter 5 can be used for estimate of the energy gain of
the molucule per one laser pulse. It is given by formula (22)
with diffusion coefficient (23). The amplitude of thee frequ-
ency term F ~ Aﬁjia and their separation A, 1s estimated
as above., The result is

e 1
{E ) (ev) ~ fﬂIEA‘ (MJ*[I [-—"‘M%J-‘t[‘secj] * (25)

The data /1g9/ agrees with {ED ~ T and with coefficient mag-

=D~

nitude. Moreover, as noted in /1,// the dissociation rate is
found to be proportional not to dipole moment of the transi-
tion squared, as usual in the absorbtion spectra, but to its
first power. This observation is also in agreement with (25).
In order to chack the proposed explanation of the colli-
gionless dissociation more experiments are needed. For exam-
ple, the dependence of the average energy gain per pulse on
the duration of the pulse is of interest. Note, that in (25)

+ ig stricly speaking not the duration of the pulse, but
the duration of the stochastic motion only. So we have assu-
med, that the trangition to it is rather fast. :

The very vast field of investigations is open for expe-
riments with two sinchronized lasers.with different frequen-
cen, If the rirst pulse makes excitation up to stochasticity
region, then the second wlll continue to excite the molecule
irrespective of its frequency, for spectrum becomes continu-
ouse. Another interesting possibility is to excite transitions
between different quasienergy valimem, for example for two ato-
mic molecules which do not dissociate up to rather high inten-
gity. Such experiments will open new chapter in spectroskopy,
but their importance i1s even larger because it will be one
of the first experimental observation of transition from dy-
namical behaviour to stutistical one in the isolated finifte

“ayetem.
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: Figure captions.
Fig.1. Phase portraits of Hamiltonian (1,4) in three cases:

&) €58, - Yl i/2)B GB), gag o) ‘Feoic%o,
The solid line is the trajectory with £=¢ . In the case

a) there are two of them : AB and CD. The dashedflines are
other trajectories. The values of action I, I, I,, I@

shown in Pig.a) correspond to limits of phase vibration at
gome energy.

Fig.2. The phase portrait of intermode Hemiltonian (14). The
golid line is the gtability boundary, the dased ones are some
trajectories in stab le (A) and umstable (B), (C). The criti-
cal value of action is Iﬁ:'ISE%FJEE'

Fig.3.The intermode resonances in molecules (0, BU3,(4%,,
0S0, , SFg . The velues of frequencies are taken from
/16/. The index of resonance i is the number of frequencies

in resonance condition.
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