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Abstract.

In the theory of the n-dimensional quantum systems the
egsential role is played by the resonant phenomena. The sgim-
pleat problem of the nedlinear oscillator with the periodic
excited force is studied in which the perturbation themry and
the quasiclassical method for the calculation of the quasi-
energy spectrum and wavefunctions is developed. The results
are applied %o spectra of systems with severali degrees orf
freedom. The long time gtability of the motion is discussed
and it is shown that the stochastic layers and Arnold difru-
slon exist only if some ptrong condition of quantum origin
ig satisfied. Some physical examplee are considered.



1. Introduction,

In this work some problems of the theory of the n-
dimensional quantum system are discussed. In contrast to
the gimple cases of the onedimengional motion and that
of separable variables, still there is no even qualitative
understanding of phenomena in such systems, their spectra,
wave functions etc.

That the problem is very nontrivial ig known from clas-
gical mechanics, under certain conditions motion of such
systems changes from the gtable, dynamical behaviour to the
ungtable, statistical one. The eggential progress in under-
stending of these phenomena in classical systems has been
made during last years and the general picture of the n-di-
mensional motion is somehow clarified. The progress came
from the mathematical studies, in particular by A.N.Kolmogo-
rov and V.I.Arnold /1,9/; from the theoretical and practical
development of such devices &8 particle accelerators and
megnetic "bottles"; and eggentially from the "matheématical
experiments" on computer with model systems ( B.V.Chirikov
et al /2/). The present work is the application of these
ideas to the quantum case.

Since the theory in question is very little known
outside the circle of specialists and still no good re-
views exists, the author will try fo present the main ide-
ag so that the reader will need only some gtandard know-
ledge in mechanics like action-angle variables etc. The
very brief but general picture we give from the beginning
in order the reader be eble to see what the content of the

paper is needed for.
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coupling changes the wavefunctions significantly, they still

The main element of the theory in question 1is fthe indi-
can be divided into families of states with small overlap,
vidual resonance between the degrees of freedom of the
which have rather simple and calculatable properties. This
gystem. Resonances are so important because they accumulate

is the content of the present work. The stochastic regimewill
the effect of the small perturbations and with time may lead

be discussed elswhere. Let us only say here, that in this
to the sgignificant change of the motion. This fact has been
case the decomposition of the exact states over the uncoupled
realised long ago in celestial mechanics and it was shown
; ones is very complicated and in gome sense "random™,
that resonant "amall denominatorg" in perturbation theory
The plan of the paper is the following. Chupter 2 is de-
peries lead to their divergence. But in the limited region
voted to the problem of onedimensional motion under the
of the phase space near the resonanee the most slowly va-
influence of the extermal periodic force. This is the simp-
rying or the resonant term of the Hamiltonian can be taken
lest problem Jﬁre the nonlinear resonance ig present. Chap-
into account exactly. This naturally leads to the idea of
ter 3 generalizes the results to the resonance between the
gseparute resonance, and the account for other terms can be
T T degrees of freedom of the conservative system. In both cases
considered as the interaction of resonances. Let us refer
TR, the wavefunctions and energy spectra ( in the first one it
the width of the region, where some resonant term is essen-
is the quasienergy /3/) can be calculated. Depending on the
tial, as the resonance width. The behaviour of the system

relative value of the resonance width amd the Plank constent
eggsentially depends on the relation between this width and
: two regiﬁ% are possible, in which the perturbation theory or
the resonance separation, the so called Chirikov criterion.

T the quasiclaseical approximation can be applied. As a sim-
If the former ias ameller, the motion is etable with the

. ple example the guasienergy spectra are found for the linear
exception of the exponentially small unstable regions - the
parametric and extermal resonances in the Appendix

B, which is already known from the exact solution /4,5/.

gso called stochastic layers. In the opposite case the mo-
tion is very complicated or stochastic with the excaption
of the small “gtability islands". Note, that the resonance
width ( and therefor this criterion ) depend essentially on 5

! The interaction of the reaonances s discussed in chap-
ter 4. They lead to the appearence of the stochastic layers

: on which the universal instability - the Armold diffusion-
the coupling strength between the degrees of freedom of the ;
. | takes place. In the quantium case these phenomena exist
gystem.
only if some condition is satisfied, which turns out to be
In the quantum case this two regimesulso exist and in -
! so severe that it is not fulfilled in some systems, at

the quasiclasgical limit the eriterion is of course :the
| firet sight completely classical.

gsame. The first or stable one means, that although the
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Finally, some wordes about the applications. The results
of the chapter 3 can be used for the study of spectrs of
electric and asoustical resonators and molecules. The appli-
cations of related ideas to nuclear physics are discussed in
the review /13/, and to field theory in /14/. The results
of the chapter 4 are of interest in cases when the long time
stability of the motion is needed. We congider briefly the
magnetic "bottles"™ and colliding beams in the text. Very
interesting epplications are thoge to atomic motion in mo-
lecules, which is discussed in separate paper. For example,
the twoatomic molecule wibration in the intence resonant
electromagnetic wave is just the problem of the chapter 2.

2, Separated resonance

of guantum nonlinsar oscillator,

In contrast to stationary problems of quantum mechanice
the time dependent ones are studied relatively little for
in thie case there is no so powerful method as the expansion
over the elgenfunctions of the Hamiltonien. But in the case
of periodic time dependence there exiats other set of states
which in large mgﬁure gubetitute for them. They are the sotates

with definite quasienergy defined by the condition /3,4/:
P 4T
W et ) 1o @ne Boocun oy (b)50es gy

Here 1%:{{) are the wavefunction of such state, &, is
quasienergy, | 1s the period of the time dependence. Belng
o L
the elgenfunctions of the operator 'TEJP(“QSJiﬁﬁ ) of
]
the evolution over one period, they form the complete orthe-

gonal set. Thus the general solution of the Schrodinger
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equation is the superposition of these states ith coeé-
ficients independent on time. Thus the knowledge of such
decomposttion is sufficient for understanding of the comple-
te evolution of a given state.

For the completeness let us begin with the case of
emall enough external perturbation. It is clear, that in this
case the states q+;{f} are close to unperturbed ones,
as well as quasienergies AP to unperturbed energies.
The perturbation theory for them is presented in Appendix
A. The only difference with the stefidard case is that the
jnitial condition is not given, but the condition (1) must
be satigfied. Let us present only the second order result

for quasienergy which is rather familiar:
Lt

; 1< ’an:'r}fz - “'}_ I in>
E=E+‘r{,.:’+-£2 TN 5,‘;"4"“’@2 ey

n " ¥ e M
L

(2)

Interesting, that this result is exact for linear resonance
/5/

In the case of the resonance the denominator is small
and the perturbation theory is not valid. If only one
trenesition between two levels is resonant the problem can
be easily sol ved exactly, see e.g. /11/. We remind this
for it is instructive to calculate quaaiﬁnergr in this case.
For V,,,,?tlﬂ-' &Jmf the result is ‘%ﬂ: E"';“i ] Vi, | + Hote
that the result is now ~|Vis| and not [V,,.J° as in (2). This
is a consequence of the gutophasing to be discussed below.

More interesting is the case when the number of states

taking part in the transitions jis not small. The discussi-



—'61-
on above ghows that trasitions are effective till the fre-

quency shift caused by nonliniarity will not reach the value
of the perturbation:

L Eir By = BB (nen )l 4. M (3)

Here W, correspond to the resonance point dE{M‘;j.‘: 5

aAn
Expanding near (], one has

£,

* : . 2
Enz Eu, + hS2n-n)+% % 0n-u,)%  (a)
From (3,4) we find the resonance width

- 2V \z

n-n < _— o

l' ol . (Idw) = ﬂﬂﬁ (5)
A

Por small values of .ﬂ-hgai the perturbation theory can

be used, for its large value

V >> h 44 (6)

the quesiclassical approximation is natural.

We shall a&me also, that the separation between the
different harmonics of the force I is mueh larger
than the width (5), they are geparated. This condition can

be written as

W £/ B (1)

If it is g0, our discussion can also be applied to unperi-
odiec force ; Which contaims discrete set of incommen-
surable harmonics. For the periodic force J)= ZT’_-T and for
amall enough nonlinearity the separated resonances exist.

In more general case Ffor high harmonics density (6) and (7)

are incompatible,

o
The quasiclassical approximation of the rejonances is

rather simple because with the quasiclassical accuracy one
can use the action-angle variables, in which +the whole
theory is more transparent. In connection with thie let us
note, that the canonic transformations in quantum mechanics
are not yet developed. The Ppractical"difficulty is the non-
cué&tation of coordinetes and momenta in the generating fun-
ction and the Hamiltonian. But in quasiclassical approximati-
on the extra "counteterms" are not essential for they arise
due to commutators and contain extra powers of small param-
eter §; . The difficulties in more accurate transition to
action-angle variables in quantum case are discussed in /10/.

Begin with quantisation of the nonlinear oscillator in
the absence of the perturbation which is rather trivial. The

Schrodinger eguation is
HiT)Yoe)= % ie) s 1=b%, @

and its solution just
PR el 1 (9)
\p;.{g)_ = exp [ + 1(E) g ]
where 1(&) is the function inverse to H,(I). The
wavefuction is periodic in ] and therefore

l—h: wh g, Ho(ht) (10)

Clear that these formulae are valid only in quasiclassical

cape.
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The Hamiltonian with perturbation looke as

H(T,8,4)= Hi(z) + v(1,6,¢) (11)

Since the perturbation V'('f, 5,t) 1is periodic in time and

angle, it can be expanded into tfuhle Pourier series:

V(I!Ev‘;f) = Z \,{““ (I){Zip ( (m - cu JZ%) (12)

I"HI'._H

Resonanceas correspond to such values of T at which
| Laigpe Do e
KW(L)=¢n ;, Wit)z =* (13)

The resonant terms in (12) are those with m #n such that
MK = € , for their time dependence is the most slow.

In other terms, only part of the perturbation [{ { I, a{)
which depend on resonance phase only is of main interest,
where o = K@ - ¢t + In order to simplify formulae
we restrict ourselws to the case K= €=1,

Considering only the resonzsnt terms and changing the
variables from I , & to I, A  we obtain the reso-

nant Hamiltonian

H(T, &)= M (L) -0+ UL, &) o

which is not time dependent.

Beforewe proceed to its quantisation let us show, that
1ts eigenfunctions have definite quasienergy, coinciding
with i.‘l'.B elgenvalue. To see this it is sufficient to returm
to initial variables

-lll91-

'l'ha: (6,4) = %(E’—dﬁ)'“}’(‘éaf} (15)

where t?;fd) i the eigenvalue of H( I,,4) o Since 1t

is periodic in & they have the property (1) charac-
teristic forstates with definite yunasienergy. Let us remind
that the quasienergy is defined up to addition of £J2 ti-
mes some integer number, just like quasimomentum.

The discussion of the nonlinear resonance - pften is
made for the case of ferr emall nonlinearity in hope for
some simplification., But in reality the situation is inverse
/2/, for large enough nonlinearity the problem is more sim-
ple and, what is even more important, it becomes universal.
In this case Ahg L 1, or in other terms

Vv h, o
o K = E‘:{ (16)

#o that the resonunt Hamiltonian (14) c¢an be expanded

near Hgﬂf‘md reduced to such universal one /2/
o g | o) 12 )
H(T, o) = 7 2 HI-I7)+ UT” 4)

analogous to that for particle with mass ﬁ/ﬂ_gg in the
potential well U (L”,{) . The regions of limited and unli-
mited phﬁ.ae motion are separated by the separatrissa ( see
Pig.1 ). The existence of limited motion of the phase or
phage opcillations is the famouse Veksler gutophasing /12/
of the nonlinear oscillator according to the force. From
{17) it is clear that the separatrissa separate the région
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in action with the width

ﬂI 2% AU ﬂ&. 2 &
(WHM) - AUz max (L- min U (18)

which of course only by Plank constamt differs from (5).
The quasiclasiical quantisation of this Hamiltonian

"is made in a2 stendard way. In the region of infinite

motion of the phase ( we shall say - outside of the reso-

nance ) the wavefunctions are

ﬁ"(d) exp( T 5’1{(;.:;)0[“*;]

S " (19)
£ e fe/ 2
Le)="174 [ﬂwﬂ“ L= Uiz a))]
and the quantisation condition with our accuracy
2
(T, @de = 2mut (20)
o .

In_gide the resonance solutione (19) are not independent
and coincide in the turning points. The solution is as usial
guch their combination Jich decreases into classically inac-
cegsible region. Far enough from separatrissa the quantisa-

tion condition is; ( o, , e turiiug poiuts )
’

o, 7
% - (o) é: T (21)
J, o[ o, (Bm Wl )]

Note that here there is no factor 2 as in (20), but any so-
lution is the superposition of both ones (19), so the tntﬁl
number of states remains the same.

If the condition (16) is not fulfilled then different
types of resonances exlist: external, parameftric etc. ln prin-
ciple they are quantized in the sams way, but for Hamiltoni-
sns of different types. The examples of such method are given

in Appendix B. The region near separatrissa will be discussed

'l Yo
below. The expansion of the found states with definite quasi-
energy over stationary states of unperturbed oscillator is
made in Appendix C. The results support our main conclusion
that the esesential change in wavefunction takes place only
ingide the resonance with the strong decrease outside. Note
that in contrast to the unperturbed states, the exact ones
have nonzero average phase which is rotated with the fre-
quency of the force. That is why the quasienergies are first
order in perturbation.

. Resonances in autonomic systems,

Begin with the most gimple case of the systeme with se-
veral degrees of freedom, namely those in which variables

can be separated and the set of independent oscillation modes

( nonlinear by themselves ) exist. For simplicity let us

congider the two dimensional system which total energy is
E (.-‘41) HE.) = E,-} {”1) + Ez {MEJ (22}

Here /1, N, are the quantum number of oscillators amd E, £,
are their energles. Even this system has inhomogenecus spec-

trum because of the resonances. Indeed near the pointas where
Kew, (u,) = € lp(11;) (23)

(K ¢ integer ) some clustering of the levels appears, for

!
the change of K-N quanta of the first mode to ¢ A quanta
of the second one results in the following change of the

total energy:
E(ns+ ki n-ty) - E(n,, n,) = 5(wik'+ wje?) N ()
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Here &daz are the nonlinearities of the modes. If they are
small compared to «J;, ( frequences do not change signi-
ficantly from level to level) the quantity (24) is also
small, Such example in molecular physice is known as the
Fermi resonance.

Prom (24) one can see, that the level density near
regonence behaves asg ?{E).m {E~ EL.‘,J"!"’FE , and there
is the succession of such thres holds due to a given reso-
nance, separated by distance K¢, - dids = JL . The gpectirum
of the discussing system i1s schematically shown in Fig.?Z2a.

Now let us turn in some small per turbation, causing
the coupling between modes. and having matrix elements of
the order of \/ . It ie clear that in first order it will
expregs 1tself in places of the level clustering, mixing
v )?/_'z

. 2
&L K2+ wie

An, w~ ( (25)

levels. ‘For small &Piﬂgqi perturbation theory can be used,
for aphapg_i the quapiclaggical one. For the case of
gseparated resonances everything can be done explicitly simi-
lar to the problem of the preceeding chapter. The main poins
are the account for the resonant part of the perturbation
only end the transition from variasbles I, I. 8, &, of

geparate modes to
A= KE, - 26, L= % (ko,+¢0:)
I

X (26)
I,:_ & —_ Z

The result is the resonant H?miltunian'

AL, 1) = QLT (wiboafet - 194 UETYIE) (2D)

where /{ Z*JZ[I:MJIS’) is the frequency in the resonance.
This expression correspondsto the approximation (16) like (17).
But in any case in resonant approximation Ifﬁ ig con-
served and -1, ,ol oscillate. We may call the discussing
phenomenon the mutysl phasing of the modes. The spectrum
of (27) is schematically shown in Pig.2b, the detailed
structure of clusters depend on the particular form of [ (<)
and is easily calculatable. Let us nmote only, that mince
I@.;Ie are tnf%ar in unite 5, then 'I}J I, are divi-
sible by K, ¢ . It means that for a given resonance only
some "sublattice" of states is important.

The generalization to menydimensional case 1is done si-

milarly. The general resonance
e
2 Kew(n®)=0 (28)
=4

picks out the surface in the phase space. Their interseptions
are more strong resonances up to periodic one K, W, = Kt =
... = KyWy » 1Yying on oneparameter line. In this cases
geveral resonant phase appears and although our mathﬂd reduce
the number of variables, the problem in generalcase remains
complicated. gnd further simplifications are needed.

In the works /6-8/ the quasiclassical approximation
for Green functions . r# studied in the path integral method.
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The applications of their results in nuclear phyegice are
reviewed in /13/ and in field theory in /14/. They consider
only orbitis close to periodic ones. In /8/ the spectrum

near the "threshholds” are found to be

22 i - f.ﬂ-{?;] s Eﬁi( 4 ‘]
tm T t— Wi, W iy H£+ E_jt}ﬁi' (Eg}

!

where E;:ii correspond to Bohr-Yommerfield quuntization
along the orbit, and f = g%ﬂ where ). are the

so called stability angles. In our terminology j% are
the frequencies of the phase oscillation and (29) ig evi-
dent consequence of (27) for smmll amplitude of these osci-
llation. So our approach gives this result in much more
elmple way, because we first make transformation to conveni-
ent variables and only then make the quantisation. Moreover,
the smallness of the phase oscill.tion is not needed but on-
ly the vulidity of the quasiclassics, which is evident for
the twodimensional case discussed above.

4. Interaction of regonances

and stability of the motion,

With the account of some nonresonant term %WTLdethe
Hamiltonian becomes

Q(Ig;i:f_J: Q(L.ﬂ{)f W(I»f:‘if{) (30),

where the first term is the resonant Hamiltonian (14). Note
that we practically return to the original problem of the
nonlinear pscillator ( this time that of phase oscillutions)
with veriodic verturbation.

r__________________—————————————————————————————————1----------.-----.-.------------IIIIIIIIIIIIIIIIIIIIIIIIllllllllllllllllllll....1
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The guestion we are going to discuss is whether the af-
fect of the perturbation is small. In this point it is con=
venient to introduce some dimengionallsss parameter ¢
representing the strength of the coupling between modes.
The nonresonant term \W/ in (30) is of the order of &
ag well as the resonant one already teken imto accoumt,
but still the effect of W  inside the resonsnce is
small together with g +« The reason is that the frequ-
ency of W/ is the difference between our resonance and
of the other ome, interacting with it. So this frequency 7™
is independent of £ while the frequency of phase osci-
1llation «J?f “’JET'. Therefore for emsll £ J2*> ¢ . Note
that it is Just the condition for resonances to be separa-
ted. Ag the consequence of this, the matrix element of ‘W
is "adiabatically emall" /2/ because of the factor
W D>~ E&P(*— f’j_:?j 1:' ~ E’xp(u & /]/5_) (31)
J2 - /

- S
Here i;}fz are some constants. Note that .this result is
espentially nonanalitical in § , snd the perturbation
expangion in £ diverges.
Since the effective perturbation is small ite effect
can be significant only due to regonances, They are called
the second order resonances /15,2/ and are of the type

#*
ﬂ{ - JZ - (Vl lLMngE?) (32}
H 4

The particular role is played by the vicinity of the separat-
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rissa where J?; goes to zero and resonances (32) exist
for any given J2?* . Moreover, they form the convergent set
of such resonances and for any amplitude of the perturbation
there is some overlap of their widths. These regions are
called the stochastic layers /2/ and their relative mésure
is of the order of (31).

Although for small £ or for separated resonances the
unstable or etochastic region is very small, its existence
" in any classical nonlinsar system ( of course except the in-
tegfable ones ) 1is essential. For one oscillator it is not
so essential for this region is "squeesed"™ between the stable
ones /1/, but for manydimensional systems it has the form of
the intersepting net of thin layers and the motion in it
can lead to qualitative change of the motion. The example of
this kind has been first constructed by Arnold /9/ and the
phenomenon is known as the Arnold diffusion /2/. These pheno-
mena becomes practically important in the problems when the
long time stability of the motion is needed.

With this introduction let us turm now to quantum case
we are interested in. Because of the discretness of quantum
energy levels the phase oscillation frequency JQ; does
not reach zero but has the smallest value of the order of

(hin typical
B RGN o)

This is clear from the quasiclassical quantisation near the
maxima of the potential. Prom thie it is clear that the qua-
giclassical theory of the second order resonances can be va-

&

el
13d if thre are many levels near separatrissa or é%ﬂﬂwgﬁ»

> 1 » which is much more strong condition then that
of quamiclasslical condition Ang > 1 for the reso-
nance itself.

Begides that the perturbation must be large enmough
for the formation of the second order resonsnces. The con-
dition is the same as (6). Otherwise the perturbation mskes
no significant changes in wavefunctions and can be taken into
account by the perturbation theory. Thie means, that the
instability always present in classicel case, disappears
under certain condition in quantum theory. The explicit
form of this condition cen be obtained fwom (31) and rewrit-
ten ap a condition on £
Co -
& o [ &ﬂi;?EJJ (34)

where [, is some characteristic value of action in the

congidered problem. Since it enter only under log depende-
nce, there is no need to make it more accurate. Note, that
this condition is very strong and may not hold for very
large systems.

Let us briefly mention some examples in which the
discussed phenomena can be important. The first one is
the magnetic "bottles" in which electrons are confined
in longitudinal direction by the magnetic "corksg" and in
the trane verse one by the magnetic field /16/. The stabi-
lity of the motion is studiéd in details in /2/. The usual

adiabatic invariant conservation is violated by the reso-
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nences between the Larmor frequency’air;ﬁﬁ. and  the
longitudinal motion one 52“ . The effectlive per-
turbation 1is then
o Bk g

&~ EXP("LEETIJ : ‘53'0{1) (353
and the condition for the existence of the stochastic lay-
ers and the particle loss due to Arnold diffusion (34)

becomes

fzﬁ > - €3

Wy 20 bn(T./%)
Eatimates for the conditions of the experiments /17/ shows

(369

that the r.h.s. of (36) is of the order of 0.1 and the
1.h.8. 0.12-0,2. It means that the boundary of quantum re-
gion was very close.

Another example, also taken from /2/, is the stability
of particles in storage ring. The ftranseverse oscillation
of particles have resoneances with each other, and the per-
turbetion is caused by the colliding beams, inhomogeneous
ionisation along the orbit etc. Tn this example nonlingari-
ty is of the order of £ itself and J?;*V ¢ . Therefore
(34) must read without the second power in the r.h.s. The
suthor 1s indebted to B.V.Chirikov for this commnent.

Experiments /18/ have revealed the Arnold diffusion
at £~1/20 - The egtimate ancordiné?%ur quantum conditi-
on gives § 2 7/3p - At ISR GERN some slow beam widening
is observed, which has been connected /19/ also with the
Arnold diffusion, but according to our estimate £ in

. this case is at least several times smaller than that gifen

by our condition. So the question remains open.

W

{9

The last example, which has no practical meaning but
atill is rather interesting and instructive, is the Solar
syatem, The queation is whether one plunet can leave the
system. This question has been "solved" meny times in the
penge that more ond more weak instabilities were studied.
Now it is known that Kolmogorov stability is violated only
by effects like the Arnold diffusion. This mekes the prob-
lem for planets purely academic for the instability time
is much larger than the age of the Universe. Bui for as-
teroids these effects can be more effective and they can
explain the so cazled Kirkwood lukes in the resonsnces with
Jupiter /2/.

But it is still interesting, that the parameter £
for planets even does not esatisfy the canditiun.(3¢)
which demsnds it to be ‘larger than something like 1072, . The
main smallness of £ comes from the evident factor M /Mg
{ ™M is the planet mass, M, 1B that of the Sum)
and the power of excentrisitet €

Eﬁ,:ﬂ,_ e !%14_@* e‘? R ER PRy (37)
where W, ¥, from the considered resonance W,n, = &z A,
For any planets it is smaller than 10-5, although for re-
ponent asteroide the condition is fulfilled.
Tn the end of the work let us discuss briefly what
happens when two resonances becomes closer. The amplitude

of the resonances of the second and further orders increase
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rapidly according to (31) and the stochastic righon
algo increases. In quantum language the exect states
become more and more complicated till they contain in
equal part any of the state from the internal regions
of two resonances in question. Whan ell rescnances overlap
' they probably contain all the wmperturbed states in the
energy region of the order of cdbling V . If this
hypothesis is true, it will explein the microcanonicel
distribution - the bases of the statistical mechanics.
Acknowledgements.
This work will be absolutely impossible without the
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Appendix A.
Perturbation theory for gquasienergy.
Let ue expand the state we look for over the unperiur-

bed ones ‘-PE with energies EK

Gilt)= Z Qu (t) % (A1)
The definition (1) for ¢, & 18
Qy, (++T) = € T8l ay, () (a2)

end the Schrodinger equation is as usmal

;t dl{h (f} - Ek‘, aEH {f) + é VK“’I’ {f) nl"I'I.H {+J (-ﬁ-3}

In the zeroth ordar g':f: CE!hEu. ‘,Qiﬂ: = &, ”P(",{;-‘Ehf)

3]

The first ordsr splution of (A2) is

(1) 4 § 1) i A ()
arzn (T) = exp (- EE*T) ﬂ:m o) - é’,xp(fgf;"]":]({y 5"”.:_ 1}2_ _H"’.cfn

_ (A4)
L R
Here L. ie the number of the harmonics of perturbation
(i) =
Vi = 80lt exp( bRt )<l vid) Ind i42)
Por K= onehas g!"- VI and for K#n
divide over the [ dependent factor one has
7 (e} L
(1) -(E, ¢ Vew, €
a {_ 5 it i
ekt &1 2 ; Lo K (A6)

The quantity {,, » 88 usual, is of the second order.

Proceeding in the same way in the second order one finds

6 Spini o AS EAE k78
L, LI.R‘— ‘;jml J 1'/1'1.—1:4 J
2 (A7)
(2/ sk B b m i) ‘
U (t)=¢ [‘}’LL I g ;: .
(g, T j *

¢ < F L Llngedy LY ?EJ?-LJ?-HW j(tﬂ'm_m;)

A

Appendix B. Examples of guantization

of resonances.

The resonance Hamiltonian of the general form (14) with
arbitrary dependence on action and angle is not the opera-
tor with known properties and it is unknown how to find its
eigenfunction. However in the quasiclassical epproximation

we ere only dealing with they in any case are of the type

Wid) « exp (; fIﬁ (') dd " ) (1)
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where —Ee i (') 1is the solution of the equation E =
- FT(IF“J) . Clear that in the claasically accessible
region only real solutions are needed. In principle
there mey be many of them crossing in points o, , the
generalization of the usual turning points. In any such
ecrogsing of two solutions they acquire the imaginary part
and since only decreasing solution is needed the relative
phase of the combination of these golutions, entering into
true wavefunction, can be found. The quantization conditi-

on (21) is generalimed as
fﬂl: Kl Ty ”{J’) Ty (B2)
- olot [Iﬁ (o) J

Let ue present some simple examples of the use of this

method., Begin with the linear {%ﬁ:: g)

nance or frequency modulation of the linear oscillator. Om-

parameiric reso-

mitting simple calculations we present the resonance Hamil-
tonian (14) for this problem:

H ( (B3)
H(gd)= dw L + V()T
where AW:w;SY2is the frequency shift of the oscillator and

the force. The equation for I () is trivisl end since the
wavefunctions must be periodic we have the quasienergy spec-

R (B4)
foundo} l=2_n§ B + VId)

in agreement with the exact solution /5,4/. The condition
Mg > V) coinciﬁilith the well known condition of the
atabili‘tjr of the parametric resonance. This fact is gene-

=D
ral, the stable resonances have discrete quasienergy spec-
trum and the unstable ones, leading to infinite growth of
amplitude, have continious spectra.

The next simple example is the linear resonance with

usual exciting force, which has the resonant Hamiltonian

e

| = ot S T

the quantity I, &) is a little bit more complicated

1 p T s,
e e E 2 / =
T [ps =g S o J‘_WHM?HL;E ALy (B6)

but in the quantisation the last term does not contribute
— e
and E - sowue E again in agreement with /5,4/.

The coincidences of zlfewquaaiclasaical expressions with the
exact ones are known in many problems connected with the
linear oscillator.

Finally more complicated example to be disscused in de-
tails els%here: the nonlinear resonance near the grownd
state, where (16) is not valid. Such is the situation in
the problem of molecule vibration excftation by the intense
regonant field. The resonant Hamiltonian is of the type

e /T2 : .,
H= awis &I fr1)-1% (87)

and for Iﬂ_. (o) four solutions may exist. The J repre-
sentation is more convenient here than the o/ one used above.

For Aw:=0 the resonance width in this case is

(%;f Ztﬁ § ﬂf:mﬂxf- H.{.'qf (B8)
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C, The decom iti of states with defi-

nite quagienergy in the unpertubed states.
Por this purpose we need to calculate integrals

em g .
C(“ = ;_TI' Sﬁid-fﬂ)ﬁ? [t-l’il-:i( " i—j j_;l'!(qd;)ﬁﬁ'f] (C1)

which cen be done by the saddle point method. The saddle
po.nt 18 determined Irom the eguation

ik = T (Belo )

which has the real solutions only for i1 close to K .

$82)

In this region

,1
277 dIﬂlte,,}/dut

F Qs ]z . (¢3)

otherwise o, is complex  end the overlap is exponential-
ly small. If y1 lies inside the resonance then the region
where ol, is real is just the internal part of the resonance.

To give the example, let us present the result for the
univerbal resonance (17) with H(d)=U -cOSL , Por [n-k[>>4ig
(that is for the state distant from tie resonance ) o, > T+
.+2f&H{%jﬂ has large imaginary part and

il Fa“_ lz £%) (;ﬂ_}{" -Ylu-xf (c4)
: ¢ ang
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Figure captiona.
Fig.1. The schematic dependence of the phase oscillation

potential as a function of the resonance phage . The B
dashed line shows the separatrissa, separating the region
A of the finite motion rrom thav B or the infinite phase
rotation. »

Fige2. The spectrum of the two dimensional system without

the coupling between modes (a) and in its presence (b). The 0
conribution of only one resonance is shown. The dashed curve -

repregsent the regular part of the spectrum ( the phase gpace

approximation ) , The structure of the "level clagters" are
shown also in more details. In the case (a) @(E)~ (E-E,;)‘r’{’
near the threshhold (24), while in the case (b) it corres-
ponds to phase oscillations (27) with ponential shown in
Pig.1. Near the thres hold 4Q = 1/AJ)  in agreement with [\ >
(29), the further grouth is the influence of the separatriss:

|
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