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In the precedinge author's paper/aflthe-nnnrelativiatic
theory of interaction of electric and magnetic charges has
been nroposed¢ in which the notion is not used about a mono-
pole magnetic field singular on a string. Such g field has
been introduced in the classical Dirac wurkfg/ to represent
the interaction of electric charge ana monopoie in usual mi-

nimal form

dsgwewh v 9
( ¥ - electric charge velocity, fl - vector potential of
monopole field. For simplicity we shall concider an infini-
tely heavy monopole locating i%&ha origin of coordinates).

It is clear, that Coulomb magnetic field caEft be repre-
sented in whole spase as a rotor of some vector ﬂ - Hevé%he-
less, as Dirac has showed, one can gel it everywhere but so-
me line (string) , where the vector potential is singular
and magnetic field differs from true moncpole field. The
usage of magnetic field containing nnnphysiﬁal and singular
on string contribution is an essential feature of standard -
Dirac monopole theory. This feature has legded to a number
of theoretical difficulties which are rather often diacussed
in literature.

In papér/1/ the lagrange function of electric charge in
monopole field has been introduced leading to the correct
magnetic Lorentz force in all points of space without any

exception. This function has a form
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classical equations of motion for a charge in Coulomb monopole

so that Lagrangian of interaction magnetic field expressed though these coordinates.

‘lM g %%_ FL,STL %) The usage of spherical coordinates however is inconvenient

for transition to a relativistic theory, when in particular

is used instead of (1). Here 7 =W - radius-vector of elec- the radiation field should be taken into account, as well as
tric charge, Sl - angular velocity of a reference frame in for generalization of the theory for a system of several char-
which the charge and monopole are motionless. The orientation ges and monopoles. In this ncte the formulation of the theory
of axes of this frame with respect to axes of the laboratory and its quantization in Cartesian coordinates are cosidered.
one is given in each moment by Buler angles J. , ? ’ Y ’ The connection betwess intsrecticn Lagrangians(1) and (3) is
which together with distance 7 are the generalized coordi- analyzed in more detail than in/ 1/ . As it will be seen, in cla=
nates of problem. If Z - axis of a moving frame is chosen ssical theory these Lagrangians practically coincide, if the
along vector h , one obtains vector potential H in (1) is chosen in E:c:]:ws-j_ngezr-/';’"r form

4 e S s f= 3—11
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The angles o and ? coincide with the spherical coordi- [‘ﬂ—"ﬂ]

nates 9 and \F « At the same time the variation over angleg
provides a trivial relationship i ( £J£i) =0 only. That is VAR JADASEE. TNy PHIETNG. S WSS ar 18 fawee.

ot L HT -
why the term with Y can be omitted in classical theory. The VY S UELE VOOUDE IR WS CINUNUIT X miag.

On the other hand, Lagrange equations change when trans—
forming from spherical to Cartesian coordinates due to a multi-

meaning of this term is clarified during quantization’f ’f. The

”a:i

canonical impulse P —— has a2 meaning of projection nj

— le-valued dependanc . rang
of angular momentum "j on the direction of radius-vector ¢ . ’ 5 o = e  on 5 oI o Nmeve -
equations in Cartesian coordinates are nonhomogeneous and con-
tain in the right side the additional singular on Z axis "force",

This "force"™ has completely compensated the singular part of mag,

The difference of this projection from zero is a specific fe-
ature of the motion in monopole field and its quantization

leads to the known Dirac condition

% . force corresponding to potential (6), As a resalt the equations
= - = —"fL (‘rL = 9} 'L‘u,ti,,..) (5) of motion in Cartesian coordinates contain no terms singular on
Thus (4) 1s in essence the Lagrange function in spherical co- 7 axis.

ordinates. Its variation over 7 , F and J provides the true



The existence of an additional "force™ also influences the
: : _ Consequently the interaction Lagrangian (3) has a minimal form
form of Hamiltonian equation and Poisson brackets of Cartesian o :
. : in Cartesian coordinates if the vector ﬁi is being interpreted
components of canonical impulse, However the equations of moti- 2k
: : as vector potential of monopole magnetic field, This potential
on have an ordinary form when written by means of Poisson brac-
coincides with Schwinger potential (6) and is singular on Z axis,
kets, This circumstance allows quantization directly in Cartesi-
: Tt is clear however that this singularity is due to the purely
an coordinates, The essential peculiarity of quantization of ; -
_ x~ s kinemetic singularity of angular velocity (. and has no relati-
charge motion in monopole field is noncommutativity of compo-
A - on to real monopole magnetic field, Therefore it must disappe~
nents of operator P=-(¥ on the system's wave function,
ar from equation of motion, We shall prove this with help of
2, Let us make tramnsition from Lagrange equations in cur- ;
: direct tramsformation of coordinates in Lagrange equations,
vilinear coordinates %. - (‘z,jji[,{j to equations in Cartesian

ones X; = (x,'}’ltz) , For this purpose let us f":l.ratly express

As
E:ﬁqi--ﬁ\;’m:ml '3__}’_ MW ¥F ¢
: S e

the lLagrang function (4) in Cartesian coordinates, The term with

Y unimportant in a classical theory is further omitted, Due to end . J
3,=U7 7, we fina ﬁ_‘?_zi[?i *L}),_J L T
| : tf;:xc Uu: 1%;} (}Xt —CH. ({a 'A) raxt E 9-3:} ?Xu'ﬁ:l(x"
e S j.%,:;gm__"_hj’_ﬂ e s e
2{Lav]] 2yl 7 d VL % ot =
. T et ﬁM(’ﬁg)]'\Qi:Q
RAVT A7 i | ad (10)
Substituting this in (4) we obtain
In the time of derivation of (I0) we have takenm imntoc account
\1[3'(*),%(?&,'501&1(:&}5{) @ L.g&.-+ gﬁ‘,ﬁ : _— that in curvilinear coordinates
P Y L
oz 23 o
where ; ;
3 }_ i It is important to emphasize once more that equations (II )
9 =2 o (\'LT)'{?J- = Lﬁu' (9) with Lagrang function (4) do not contain a singular magnetic
6



force,

As follows from (I0), Lagrange equations in Cartesian
coordinates are homogeneous, if Q = () only. However it is
clear that @: # 0 4in our case, Indeed reet T £ 0 as the angle

QL is no a single-valued point function, Tt 'may be verified
by means of calculation of W-o’f‘i-?aL flow through arbitrarily
small surface crossed by Z axis, By Stocks theorem this flow -

coincidees with eirculation of vector ? o around 7 axis, This

circulation is equal to A1 , so that

ol To = LT Y 9 () (12)

where 'z | = a component of radius-wector orthogonal to Z axis,

As a resalt the additional "force" Q is found to be equal

Q=D @n|Twtid]

(13)

( In this relation it has been taken into account, that ﬁl% (2)=0

and that velocity U has no singularity on Z axis,)

On the other hand due to (9)

et =—Eﬁ['ﬁoh91u(ﬁ.w]— gﬁf(ﬁwu{ﬂ:
L.

(14)
(V) eet T

~

As a consequence of (I3) and (I4) the terms aingular on ZF axis

cam;al and the equations of motiom take the form
SE it otn
?*;,f;% = Th] (15)

as it should be in the case of motion of electric charge in meg-

netic field j(.=-=— L. T.et us note that if Q_ is omitted in

—

[}
"
the right side of (I0) we shall obtain tke equations of motion

in a field with a string along 7 axis,

3, The Hamiltonian function in Cartesian coordinates has

the form
=T (P-ef
300, 70,p]= Hoop = oy (16)
where
5L ’}i 27,
T: T ) -
q?‘. ) P‘_ (}5{‘ %;t j (I7)

( I, = a canonical impulse in spherical coordinates).

With the help of (I0O) and Lagrange transformation we can
obtain

dy, OH

20T

0 = (18)
afi_ WK

T IO T Q;

g0 that Hamiltonian equations do not have a canonical form., In

consequence the contribution of string drops out from edquations
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{T8) and they become completely equivalent to (I5),

Now let us find the Poisson brackets of X and P , We can

compute them knowing, how these guantities depend on canonical

variables ? and J . After simple calculations we obtain
}lxhxjs O E[pa,}{ig = %;3 (19)

but -

= .bLg" ’f-?p, - e Bt (20)
Sv ?L;?..JS e (‘}K:ﬁﬁé = th}{drﬁ'}{‘)“‘ i .% (.ﬂ-v) EESH. Mu_? UL

so strictly speaking Cartesian impulses are not canonical,

Using (19) and (20) equations (I8) may be represented in the

form
dx: e~
— H X.‘
{1}
&¥i,_ %
PR L

Finally because of (I19), (20)

15;}\5&.8 -3 }lL":S*P" E'ﬂmp;,‘aﬁﬁz“%fﬁgﬁju{(ﬁﬂ}?ﬂg?i—
(22)

—uk ()T )] - & o i = - eyl

The contribution of string camcels in (2T) and (22),

Similarly the singular parts disappear during the calcu-

lation of Poisson brackets of others mechanical quantities, for

T=[% (5 -ef)]- %E

Formulas (I9) - (2T) provide a foundation for guantization,

example of somponents of angular momentum’ 1/

I0

9

4, The quantization is carried out by means of substitu-

tions:

(23)

The Hamiltaniran operator jf‘ equal to
ﬁ _ (P <0 Pif' e
e i
and commutes with impuls f
As noted sbove, the operator FE;’, has a :e'?.ning of -an.
operator of the amngular momentum projeqtion ﬁ% ‘on the direc-
tion of radius-vector, In clasaical case this projection has
a single value — % for definit system, That 1s why it is na-
tural to suppose, that in quantum mecheanics the superselection
rule exists for quantum mumber [ od only states with fixed
value of PX are rea.lined._. The possible values of f'} are gl-
ven by formula (5), Therefore we can make use of Hamiltonian
» £ 3 5 A% _
H= (-Pf—;m) (25)
The guantum mechanical equation of motion are obtained from
(2I) by means of substitution of classical Poisson brackets
by ‘quentum ones, The commutators of operators X and F’ .m_qr
be found with the help of the formulas (23), Tt is easy to

verify, that as usual

1T



[K;‘Xj]= 0 3 [X;f;’i]= L%;i (26)
On the other hand

[PI!‘Pi] =":£'Lin,'bd'+-n$u}~%; (27)
The wave function of charge in monopole magnetic field may be
represented in general case in form of superposition of stati-
ona:g'atatus, their angular part being givenfzf by Wigner fun-
ﬁtiunch.‘ {J-w) € roLé [?jei 'L.. In virtue of superselection rule
for [% all terma in this superposition correspond to one and
the same number I"ﬂ.' s 80 dependence of wave function on ansle}{
in'

is always given by phase factor € » Using the xnown’ +/

'p:'apurty of D{ funetions

oo odbutmai™s, (28)
we can easily conclude that’)
not®d) 3, bl =
= (R¥)net (72) Prhl, =- Z (ot 74 by, (29)

) To uf:rmpara with ordinary situation n:te, that for example
in the cese of motion in electric central field an angular
dependence of wave function is written by spherical harmonics

\(g_h(ﬁlg,vani_ahlng on 7 axis at m # 0 , so that

Mlﬁdifﬁ xh‘ ("‘u =0
T2

Consequently for srbitrary state of system under consideration

[%’c,%’é] = ¢ % anis%m“w

(30)

This relation is a quantum version of (20), That is why the
nonphysical contribution of string will cancel in the time of
calculation of commutators of any physical guantities in quan-
tum case too,

Using (30) we can obtain as one would think

eq LB LR BRI =20bc0) (31)

On the other hand, the left side of (3I) is equal to zero
identically (Jacoby identity), However as the radial depen-
dence of stationary states of charge in monopole field is gi-

vez:u"r 5/ by Bessel functions

R(?) W't rj (32)
| Fﬁ— (o)

(fnsj - half-in'begar), vanishing in the origin of co-
ordinates at any yL + U and é , Jacoby identity is fulfiled
for any wave function of the asystem.

The above consideration shows, that Dirac string has
a purely kinematic origin, Its cotribuﬁion disappeared fr_ﬂm

both equation of motion and Poisson bracketa (classical and

I3
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