И Н С Т И Т У Т УУ ЯДЕРНОЙ ФИЗИКИ СОАН СССР

ПРЕПРИНТ И Я Ф 75-82

S.I. Eidelman

SOFT PIONS AND DECAY Y - YTT

Новосибирск

SOFT PIONS AND DECAY Y'> YTT

S.I. Eidelman

Institute of Nuclear Physics, Novosibirsk 90, USSR

It is shown that application of the Adler selfconsistency condition to the decay $\Psi' \rightarrow \Psi \pi^+ \pi^-$ provides an explanation for the experimental distribution in invariant masses of the $\pi\pi$ - system.

Recently the SIAC-IBL group reported the discovery of the decay $\Psi' \rightarrow \Psi \pi^+ \pi^- / 1/$. Analysis of the events $\Psi' \rightarrow \Psi' + \pi^+ \pi^- / 1/$ gave evidence for production of pions in a state with I=J=O and exhibited small contribution of states with low invariant masses $m_{\pi\pi}/2/$. In this work the decay $\Psi' \rightarrow \Psi \pi \pi$ is considered under the assumption that J'=1 for both Ψ' and Ψ' , and it is shown that application of the Adler selfconsistency condition provides an explanation for the observed $m_{\pi\pi}$ distribution.

The decay matrix element is described by 5 independent amplitudes

$$M = f_1(\epsilon \epsilon') + f_2(\Im \epsilon)(\Im \epsilon') + f_3(Q \epsilon)(Q \epsilon') + f_4(\Im \epsilon)(Q \epsilon') + f_5(\Im \epsilon')(Q \epsilon), \quad (1)$$

where f_i - scalar functions of the invariants \mathcal{T}^2 , (\mathcal{T}_0) , (Q_0) ; Λ' - 4-momentum of Ψ' ; E', E - 4-polarizations of Ψ' and Ψ ; $\mathcal{T} = k_1 + k_2$, $Q = k_1 - k_2$; k_4 , k_2 - 4-momenta of pions.

The energy release in the decay is rather small ($\delta = M' - M - 2\mu = 309$ MeV, where M' = 3684 MeV, M = 3095 MeV - masses of Ψ' and Ψ' respectively, μ - pion mass), thus produced pions have small energy. This allows to retain in (1) only the terms quadratic in small momenta T and Q. Due to zero isotopic spin of the TT - system the matrix element must be symmetric with respect to k_1 and k_2 . Then at $k_1 \leftrightarrow k_2$ f_1 , f_2 , f_3 do not vary while f_4 , f_5 change their sign, i.e. are proportional to $(Q_{\Delta'})$. Therefore the fourth and fifth terms in (1) contain third powers of small momenta and can be neglected. Expanding f_1 in a series one obtains for the matrix element in the quadratic approximation

$$M = [a_1 + a_2 (\Im a) + a_3 \Im^2 + a_4 (\Im a)^2 + a_5 (Q a)^2] (\epsilon \epsilon') + a_6 (\Im \epsilon) (\Im \epsilon') + a_7 (Q \epsilon) (Q \epsilon'), (2)$$

where a; - constants.

Use now the Adler selfconsistency condition according to which the decay amplitude vanishes at zero 4-momentum of the pion. Then (2) gives

$$a_1 + a_3 \mu^2 = 0$$
, $a_2 = 0$, $a_4 + a_5 = 0$, $a_6 + a_7 = 0$. (3)

Neglecting the terms ~ \mu^2 one obtains finally the following expression for the matrix element:

$$M = A_1(\kappa_1 \kappa_2)(\epsilon \epsilon') + A_2(\kappa_1 \Delta')(\kappa_2 \Delta')(\epsilon \epsilon') + A_3[(\kappa_1 \epsilon)(\kappa_2 \epsilon') + (\kappa_1 \epsilon')(\kappa_2 \epsilon)], \quad (4)$$

where $A_1 = 2a_3$, $A_2 = 2a_4$, $A_3 = 2a_6$.

Relative values of A_i are unknown, therefore we consider each term in (4) separately. The corresponding $m_{\pi\pi}$ distributions are shown in Fig.1. It is clear that distributions differ considerably from each other, the first term in (4) giving the $m_{\pi\pi}$ spectrum consistent with the experimental one (obviously quantitative comparison must take into account the experimental conditions). Thus small contribution of states with low $m_{\pi\pi}$ to the experimental spectrum can be accounted for providing that $A_2 = A_3 = 0$. One should note the essential role of the factor (k_1k_2) appearing in the matrix element due to the Adler selfconsistency condition and giving a factor in the spectrum proportional to $m_{\pi\pi}$ at large $m_{\pi\pi}$.

Smallness of the second and third terms in (4) is confirmed by experimental angular distributions. In fact the first term in (4) corresponds to a pure S-wave for the $\pi\pi$ - system and to the correlation between momenta of leptons from Ψ decay and the Ψ 'spin in consistence with the observations /1,2/. The second term in (4) leads to pion anisotropy due to the factor $(k_1\Delta')(k_2\Delta')$, while the third one corresponds to correlations between pion momenta and spins of Ψ' and Ψ in contrast with the experiment.

Putting now $A_2 = A_3 = 0$ in (4) and using the dimensionless constant g ($A_4 = g/F_\pi^2$, $F_\pi \approx 93$ Mev - $\pi \rightarrow \mu \nu$ decay constant) the following expression is obtained for the $m_{\pi\pi}$ spectrum:

$$\frac{d\Gamma}{dm_{\pi\pi}} = \frac{8^2}{4\pi} \frac{(E^2 - M^2)^{1/2}}{192\pi^2 M^2 F_{\pi}^4} m_{\pi\pi} (m_{\pi\pi}^2 - 2\mu^2)^2 (1 - 4\mu^2/m_{\pi\pi}^2)^{1/2}, \quad (5)$$

where E = $(M'^2 + M^2 - m_{\pi\pi}^2)/2M' - \psi$ -meson energy. Integration over $m_{\pi\pi}$ gives

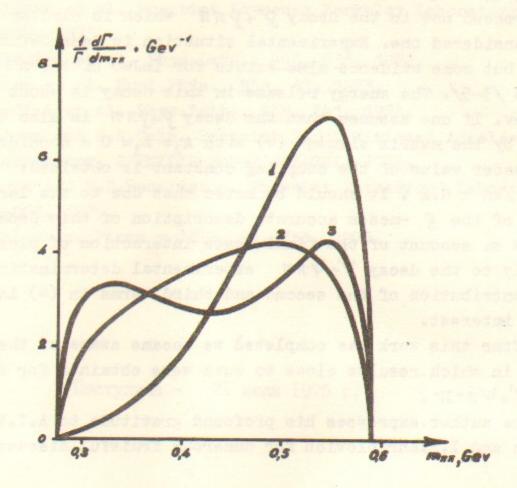


Fig. 1. Distribution in invariant mass $m_{J/J}$ for each term in (4) separately: $1 - A_2 = A_3 = 0$, $2 - A_4 = A_3 = 0$, $3 - A_4 = A_2 = 0$.

Using Ty'=220 kev and the branching ratio of the decay mode y', \yi+ji equal to 32% one obtains from (6) g²/45 =0.05.

Proceed now to the decay $\rho' \to \rho \pi \pi$ which is similar to the considered one. Experimental situation is less definite here, but some evidence also exists for I=J=O of the $\pi\pi$ -system /3-5/. The energy release in this decay is about 550 Mev. If one assumes that the decay $\rho' \to \rho \pi \pi$ is also described by the matrix element (4) with $A_2 = A_3 = 0$ a considerably greater value of the coupling constant is obtained: $g_{\rho' \to \rho \pi \pi}/4\pi \approx 4.2$. It should be noted that due to the large width of the ρ -meson accurate description of this decay requires an account of the final state interaction of pions. Similarly to the decay $V' \to V \pi \pi$ experimental determination of the contribution of the second and third terms in (4) is of great interest.

After this work was completed we became aware of the papers /6-8/ in which results close to ours were obtained for the decay Y'> \PI+II-.

The author expresses his profound gratitude to A.I. Vainshtein and I.B. Khriplovich for numerous fruitful discussions.

REFERENCES

- 1. G.S.Abrams et al. Phys.Rev.Lett., 34, 1181, 1975.
- 2. G.S.Abrams et al. Preprint Lawrence Berkeley Laboratory, LBL-3687, 1975.
- 3. H.H.Bingham et.al. Phys.Lett., 41B, 635, 1972.
- 4. M. Davier et al. Nucl. Phys., B58, 31, 1973.
- 5. F. Ceradini et al. Phys. Lett., 43B, 341, 1973.
- 6. L.S.Brown and R.N.Cahn. Preprint Fermi National Accelerator Laboratory, FERMILAB-Pub-75/33-THY, 1975.
- 7. D.Morgan and M.R.Pennington. Preprint Rutherford Laboratory, RL-75-062, 1975.
- 8. M.B. Voloshin. Pisma v JETP, 21, 733, 1975.

Поступила - 21 июля 1975 г.

Ответственный за выпуск Г.А.СПИРИДОНОВ Подписано к печати 8.IX-75г. МН ОЗІ56 Усл. О,4 печ.л., тираж 200 экз. Бесплатно Заказ № 82.

Отпечатано на ротапринте ИЯФ СО АН СССР