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Abstrascgt

The critical behaviour of a system of N coupled
fields with arbitrary nonsymmetric interaction 1s consi-
dered using the renormalization-group technigues.

To the first order in €=%-d it is shown that
there exist both fixed points possessing a symmetry and
nonsymmetrical fixed points. Also to the first order the
degree of stability of this fixed points is investigated.
The existence of fixed points possessing a symmetry is
proved to any order ey -



CRITICAL BEHAVIOUER OF THE COUPLED FIELDS MODEL
B.G.Eonopel' chenko

Ag it is well known the renormalization group method sug-
gested by Wilson reduces the problem of critical behaviocur of
a gystem to the invegtigation of the fixed points of the re-
normalization-group equations (see a review [1] ). The featu-
res of the critical behaviour are determined by the properties
of the corresgponding fixed point: In the system of coupled
fields the existence of (internsl) symmetry in the critical
points is connected with the symmetric properties of the cor-
responding fixed points. In particular, the effectibe Hamiltow
nian in the fixed point can possess a symmetry even if the
initial Hamiltonian doesn't as it was shown in [2] for the
system of two coupled fields.,

In the present paper we consider a system of /N scalar
fields with arbitrary (nonsymmetric) interaction., We will
show that to the first order in € = 4 -4 ( d is the di-
mension of space) the renormalization group eguations possess
both symmetric and nonsymmetric fixed points. The degree of
stability of the fixed points is also investigated. It is
shown that the most stable fixed point for A < 4 possesses

5‘0( ) 'mmetry but for NV > 5 the most stable fixed point
is nonsymmetric., The existence of the fixed points possessing
a symmetry is proved also to any order in € .

1. We consider a system of A/ Interacting scalar fields

¥, with Hamiltonian

Hn . g(v'ﬂ:)zfg‘zf (Pf-r— §th,, ﬁ"?f?:} (1)

& @ o
where ¢¢ and g = Ukc arve arbitrary.



To the first order in & =4 - 4 one can obtain by the
renormalization-group method [1] the following recursion for-

mulas for 7. and U« (see also [3] ):

= YT QU+ 3 Usp) (Kb )
(2)

€+d - e_‘ e
Z(.:; = 2 (au: - Z(M(uu‘ + fox)-
A £ e L
e Z‘j Ucn Une ~ Y Usx
The fixed points are therefore the golutions of the system of
equations:

3’5:"" Xﬂt’i'" & Z”m,

(3)
6&3 a:; = fﬂm(fln + Z(n:l:) "’Z'z(m ZZ,K +4"Z(nr .

It is not difficult to show that beside the Gausslan fixed
point there exist several types of fixed point;ai.

I. Trivial fixed point
kg o Sl
l(;‘:(f##)-: 0 P z({[ (fr{;--?”j“ _‘9'6&2"

B :
Cl(e=4. W) =~ -:3'6612,

This fixed point corresponds to /¥ independent fields.

The following two type of fixed points correspond to the
ggﬂe_when all_ Ui % O

e il S pme e ule SEDH -—-——-'—*—--—_-L———““-_

* In the work [3] only II and IV type of fixed points
have been found.

11, The fixed point with maximal symmetry:

' o N
U;k({,x*:{,..;, W)= 3+~, 6&2 'Z' (r-— #-éﬂ‘&—{%e&z.

The effective Hamiltonian corresponding to such fixed point

possesses the SO(N) synmetry.
I1I., Nonsymmetric fixed point:

U (=4, M=U=~ KL err Ti(c=4 . n)=- ;';f cbrz,

9m

Ur (Crk; ge=gm)= W= 3% < sL ez,

.f

For A = 2 this fixed point correspond to two independent

fields ¥, +% a0d ¥,-%B [2] .

Then there exist fixed points for which some Z(;gﬁml;.!-
IV, The fixed points with partial symmetry:

z _ :
Uk (¢+6)=0, Jor (=14 N, k=nes W

Ui (é=4., 7) = U = - €,

Z«{a:(f*’ﬂr ;f‘=$ rR)=W=U = 66!-3;

F+n
& i
3(;;'(: =£+:€,“.J ﬂ) = -'-9{-" E&:}

" R )
Xa (" 1., n) (ﬂ‘ “7) 66!2

T
Tlc=red , W)=-4%ebnz.
The effective Hamiltonian possesses the 5 o( R) syunetry.The

fields ¢, (¢=ms4,., # ) do not interact neither ome with others
nor with the fields @, (<(=4%., A ),



V. The fixed point analogous to III

¥ 2 i
U ((+)= 0 )(0? (=4, N, K=p+d N

It should be noted that there do not exist fixed points
which are intermediate between II and IV (III gnd V) in the
sence that some Z(:': (:é—ﬁ.-.ﬂ,'xs.n{,.w) are not equal to zero.

VI. Pinally the general case, when among A fields ¢,
there exist g uncoupled groups of fields containing corres-
pondingly #, fields (it is possible that s, =4 ). In every
group of coupled fields it is possible (for g 2 2) either
the symmetric case ( § O(!f) group of symmetry) or nonsymmetric
case (of type V).

The critical exponents for each enumerated type of fixed
points can be calculated by the standart method [1] .

It should be noted that symmetric (II) and nonsymmetric
(II1) fixed points have a different bebaviour in the limit

N> o0 . For symmetric fixed points we obtain in this limit
the agreement with the spherical-model results [4] :

Un(w—>2)—> 0, T AN>0)=-%crl

For nonsymmetric fixed points (of type III) we obtain in the

limit A—> o0 a system of A uncoupled but selfinteracting
fields with

Ui (W =)= Lelra; T(nar ) =-£ebar

> Now we will find the ranges of initial values of %¢
corresponding to each fixed point and discuss the degree of
stability of fixed points.

Let us consider a system of X coupled fields. As we
have seen there exist three fixed point (we denote U = £
U (#0)=W): 1) U 40 , W =0 (type 1), 2) W =Y (ty-
pe II) - fixed point with S'O(r) symmetry, 3) W = .Ft-i'fii
(type 111) - nonsymmetric fixed point.

Let us firstly consider the case M £ 4. Using the recur-
sion formulas (2) it is not difficult to show that the symmet-
ric fixed point gives the critical behaviour for any initial
condition with We in the range ©O < Wo < i—‘:—? « The fixed

‘point 1) gives the critical behaviour only for initial cou-

dition We = 0 and nonsymmetric fixed point gives the cri-
tical beshaviour only'fnr initial Wo = %“_ﬁ . B0 the symmet-
ric fixed point is the most stable fixed point for K = 4.

The ranges Wo<0 and Wo ?—i—‘%‘- are anomalous; for this
type of initial conditions the recursion formulas give values
of Uex which tend to infinity. As a result one go out-
side the range of the validity of the recursion formulas (2).

The situation is changed for #> 5. In this case the most
stable fixed point is a nonsymmetric one. The nonsymmetric fli-
xed point (with W=}“E‘; ) gives the critical behaviour for
any initial conditions with 0 <Wo<¥e , Symmetric fixed
point gives the critical behaviour only for initial condition
Wo = . , and therefore a symmetric fixed point is less
stable than nonsymmetric one.

In the case /2> 5 the ranges Wo< 0 and Wa? Uo are



anomalous. We see also that for M 4 symmetric fixed point

lies on boundary of the range of validity of the recursion
formulas (2).

The fixed points of type VI (and in particular of types
IV and V) are less stable than fixed points of types Il and
1II. Indeed, if in the space of values of Ur we go out
of the point {t#8)= O and move aloug a line for which
all &k (¢¢x)#+0 , then we will get either into gymmetric
fixed point (for X < 4) or into the nonsymmetric one (W =
= 3% ) (for n3 5. In the fixed point of type VI we will
get only if we will move along the lines for which some of
the .2.(;-',; (c':rx) are equal to zero.

Anslogous for fixed points of type V1 the degree of sta-
bility is in general the less the more guantities i ((#K)
for these fixed points are egual Gto zero. For the given fi=-
xed point the degree of stability it isn't difficult %o de-
termine by reasoning used above.

Thug, the fixed points of the recursion formulas (2) can
be classified not only by the types of symmetry, but also by
degree of stability and fixed points with higher symmetry are
more stable, |

As it was shown in [1] thedegree of stability of fixe
point is conmected with a number of thermodynamic parameters
that are fixed at the corresponding critical poinC. Namely,
for critical point corresponding less stable fixed point umo-
re thermodynamic parameters wre¢ fixed.

S0, for the system of A coupled fields thefixed points
II ( N<4) and III ( M2 5) give the critical behaviour with
the least number of fixed thermodynamic parameters and fixed
point I corresponds eritical point with the most number of fi-
xed thermodynamic parameters. For fixed points of type VI we
have large number of intermediate cases.

Thus, for critical point with higher internal symmetry
the less number thermodvnamic parameters are fixed and vice
versa.

ki 11.#"*.

A

For the field theory the desree oi instability of a fi—
xed point determines the number of free parameters in renorma-
lized theory associated with the fixed point fA] « So the more
symmetric renormalized fleld theory { renormalized theory asso—
ciated with a more symmetric fixed point)of A  interact-ing
scalar fields has less number free parameters than the less
symmetric renormalized field theory.

3, We investigated above the fixed points for the system
of M coupled fields to the first order in € =& = d . Now
we consider the question of existence of fixed points posses—
gsing 'a symmetry to any order in € .

As it is known [1] to the higher oxder in € an effec-
tive Hamiltonian M has the Landau-Ginsbers form in which all
quantities «®? are important ( 2“Y are the coefficient
corresponding te the term IP'“ in H ¥ ). The recursion for-
mulas for u"" to.any order in € can be obtained by stan-
dart method [1] . Following [1] we sugeest that Z[m” (excep~-
ting 2t® ) are constants. Therefore the "Diagrams" (see Lec—
ture IV in [i] ) are sums of all one-particle~irreducible
zraphs. The equations which determine the fixed point have

a form:
0 = LI U, (4)
e - faf8, Uce"), (5)
u:: " f{re ( Z(‘:l'}‘ } ‘Z(‘:i‘)f 4

o, The functions £¢, fie,- are polynomiales in 22" and

e of the degree M and Mm+1, where M is the order in

€ which we are dealing with, There is a correspondence De-
tween each monom ~in the polynomials in r.h.s. of (4=-6) and

the graph with definite set of internal and external lines.



It is important that a numerical factor before each monom is
purely combinatorial, i.e. this numerical factor is completely
determined by the structure of corresponding graph.

Let us prove now that to any order in €  the system of

N coupled fields have a fixed point possessing JO(W) symine t-
Ty i;e. the system of eguations (4=5=6) have a solution ﬂ? =2(a1,
U = U ¢ yr= 4., N).

Let us first comsider equation (4) and (5), Let us divide
all equations (5) into two Broups; first -Hf'?r quantities zZ}:""
and second - for nondiagonal quantities U (¢#%) . Comparing
two equations for two different nondiagonal Z]f; s for example
ZE:.'. and Z(;’; we note that these eguations are the results
of summing of two sets.of graphs which are topaldgically equiva-
lent one to another. Therefore, to each monom from one equation
it is possible to compare such monom of the another equation that
these monoms will be connected by substitution Merp , <7 .
The numerical factors (in view of there combinatorial nature)be-
fore such monoms in different equations coin¢lde.Thus, the equa~-
tion for ,,,',}: turns into the eguation for Z{:: under substi-
tution mep , g« ¢ . Analogous, we see that the equations for
diagonal quantities Zé?" also transform one into anfother under
substitution of indexes. Therefore, the conditions Z(z)-’(rl-a;-.nj=
=Z{“", Z(:; ‘(:lﬁx; c_;.t:-t-,nr) = W™ dao not contradict to the system
of equations for Z[,‘: + Under these conditions this system re-
duces to two equations for U™ and w .

Futher, it is not difficult to see that the polynomial in
the egquation for Zg" is possible to present in the form of
sum of the monoms with coefficients which coincide with coeffi-
cients in the polynomial for dr}'(t;##(to the first order in €
gee equations (3)) . Thorafnra,j}f one take EI*L-WM then the
r.h.s8. in the equations for U, and 71:: ( t'H:) will coinci-
de and thus, the system of equations for Z(:: has a solution

724™= \W® . As a result the whole system (4-3) reduces to one

10
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egquation for Z(w.
{2) ¥ .

Above we have suggested that a1l %, = ¥ o It is
sossible to gee that this ~ondition doesn't contradict to the
aguations (4). Indeed, the equations (4) transform one into
another under substitution of indexes. and therefore have a
solution Z{i‘-“: x, er = U™,

Thus. the system of equations (4-5) have the solution

Zg’m({-:{,... N)= T and Z(?txf{;tt,;#ﬂd= 2¢™ that correspond
to S'O(w) symmetry of quadradic and biguadradic term in effec-
tive Hamiltonian K ¥.

PFuther, since the guantities Z{?ﬂ_f{ﬁ}_f)&r& expressgsed on-
ly through Zﬁ“ and Z{ﬁ;’ then taking the values Z{;mfz' X .
and w:-"-‘ 2™ one obtain, as it is not difficult to show
the values of Z[f:g' corresponding to SO(W) symmetry.

Thus, we have shown that for the system of A/ interac-
ting fields there exist (to any order in € ) fixed point for
which effective Hamiltonian possesses the S'O(W) symmetry.

It is not difficult to see that to any order in &£ the-
re also exist the fixed point of type VI for which H* pPoOSse s=
ses partial symmetry. It is obvious that these fixed points
are less stable than those with S'O{alf‘) symmetry (for W< 4).

Phus we have shown that the system of /Y scalar fields
with arbitrary (nonsymmetric) interaction possesses a large
set of fixed points with a different type of symmelry; from

SO(NM sroup of internal symmetry (fixed point with maximal
symmetry) to the absence of continuous group of symmetry (fi-
xed point with independent fields).
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