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1t is shown that . the homogeneous Schwinger-Dyson
équations for arbitrary interactions are invariant
under arbitrary Lie groups. Hence, any solution of

these equations is continuously degenerate.




Or. Symmetry of the Homogeneous
Schwinger-Dyson Equations

B.G.Konopelchenko

It is well known that quantum field theory admit
a formulation in terms of Green's functiong. A re-
normalized set of the equations for Green's func-
tions - Schwinger-Dyson equations [1-4] possess, in
genersl, the same symmetry as the Lagrangian of the
theory. But the homogeneous Schwinger-Dyson equati-
ons which arise after elimination of bare vertex
(i.e.when the field's renormalization constants are
equal to zero) possess higher symmetry. As it was
shown in [5,6] the homogeneous equations are confor-
mal invariant and therefore permit the solutions
with symmetry higher then Poincare, viz. conformal
invariant solutions. Homogeneous Schwinger-bDyson
equations are conformal inveriant also for arbitra-
ry interactions [7}a

At the present pasper we investigate a symmetry
of the renormalized equations for Green's functions.
We will show that the homogeneous Schwimger-Dyson
equations for arbitrary interactions are invarisnt
under arbitrary Lie groups. Therefore, these equa-
tions permit the solutions with arbitrary symmetry.
Hence, any solution of the homogeneous Schwinger-
-Dyson equations is continuously degenerate.




Let us consider for definiteness a theory of the
one interacting scaler field. Schwinger-Dyson equa—
tions contain as full Green's functions so and ampu-
tated Green's functions. We will now obtain the =qu-
ations for these functions which follows from the
demand of the symmetry.

Let the Green's functions are invariant under
Lie group G with generators E (¢=1,-,~#) which sa-
tisfy commutation relations

R, E]-clF

(Gt j=1,m) D

where C{,x are the sdructure constants of the group

Ihe scalar field $P(x) has as known the follow-

ing transformation law in lineer reslization of sym-
metry

U POIU (9= Pr= Ste,x P(x’)

where C.g,' are the parameters of the group G & Z{(f)*'
operator of the unitary representation of G , jd(c‘,x)—

some function. For infinitesimal transformstions we
have

S(F(X) T (P ’()9__ ‘P(X): C-CL[EH WK)_]: - (.'C:-c@(.'(l') (f(J_t) (23

As it follows from (1) the differential opera-

tors f/),;‘(x) satisfy the commutation relations ( [o>
denote a vacuum):

[ D:69, Deco] polo>= Ce Dy 00009105

The general form of the operators .&(x) for field's
space~time symmetries is

D 9= fiyo095% + 09 (pagypn®
?

Operators :Ff(/)(x)é_i?“ are the generators of the group
(> in space-time realization amnd functions (%)
are determined from S‘(CJ X) «
By virtue of (2) invariance conditions (&6=0)

for Green's functions G( X,--, Xn)=Lof T( Ax.) --- 'P(Xu)) /n)

may be represented in the usual form

(. :D(;(x,ﬂ L +$‘-[x,,,)) G—(xi,.., Xn)= O (8)

(¢c=1,.., /)

The smputated Green's functions are determined by
the relation '

G( Xe ).y Xn) zf‘(% o(y,, G, Ye)--- G, y,,)/}g,}__? #2)(6)
Let us introduce the adjoint field ;5(#). 80 that
oo = [dyllsg)ety) | prv- [dyGog)eis)
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Amputated Green's functions are the vacuum expectation
values of these fields

/_1()&_,..3 Xr)=<o[ T(prx) - t?(x,,)')[ 0> (8)

<ol T Prg)[ o> = 5(x-g).

We now obtain the equations for (?JJ(::) and /_'(n)--j)m) ana-—
logous to (2) and (5). Taking into account (4),(5) and
integrating by part, we obtain

deprx) = jcfg Glyy) §Pry)=
- cci[dy D) 66,9) Vi) =-<csfdy Ges) Digfie)

[)

where

D)= 5y ) @y o

0 y/‘
- Tl.as

T %’(@:—,{C; 5;@) ¢(x) p [F;;, 'F(x)]= - D (%) {5( B )

Using the equations for functions f‘b“) (x) and P (x)
which follow from (3), it isn't difficult to show that

the operators D (x) satisfy the relations

[ D. v, fx £ x)] Prolo> = Cly @J(x) o) [0>.

Using the equations for functions —_,C,‘(ﬂ) (x)

and Pc(x) which follow from (%), it ign't

difficult to show that the operators 2. (%)
satisfy the relations .

[ D6, D, 0] F0lep=Cl ;9 $01e>

Then, the Casimir operators of the group G
don't chenge by the substitution 2;(1)-—3-,?)‘@.
Therefore, fields @(x) and P(x) are trans-
formed by the equivalent representations of
the group (G *. from (7) and (8) follows thet
transformation @P(x)-> P(%) is analogous to ri-
sing of index in the tensor analysis. The fields
©(*) and L'F{:g) may be congidered as co- and contre-
variant components of the same field« The propa-
gator (5(xy) is analogous to metric tensor.

Frem (11) it follows the equations for am-

putated Green's functions

(a(b:"()fz)'!‘...+5:{)fn))[7()(ij,__) )Gc)=b (12)

(c= 4, V)

®¥por Poincare group ,@('(x)-:.([){(x) 'and, hence.
fields @(x) and P(¥) are transformed by the iden-
tical representations. For conformal group Qc'd =
= Dgg- A(¥)si-e. the field P(x) hae the scale dimen-
sion d=y-d [:;]




m - particle i&reducible amputated Green's func-
tions also satisfy the equation (12).

The generaligzation of the equations (4),(5),(10)
and (12) for arbitrary field (with many components)
is straightforward and obvious. |

Let us pow consider the homogeneous Schwinger-

4Dysen equations. We consider for definiteness the
ff theory. These equations have the form [3,4] (no-
tations follows to [4] ):

—=} = L—0E + 5O (13)

ﬁ}n:—é—}n A(E(@;fm—(ff (14)

n>4).

In the coordinate space (1%) have the form

G (X‘J X"j Xs, x") s —Lf‘(gz dgg C(Z; 6{21 d{;_ dﬁz G(XI} 1{5 Z:t} yi) X

X F(#‘;y-’) /_’[3:; Z;)[-'/{{, £‘) GK (f’;f Z2,42, Xz, X3, Xy) + (15)

+*zf"fdsf, dgs dz, dz, G(x, 9, 20, %) [, 90)[ 12, 2:) G (22,2, %2, X3).

Let functions G(x,, .., Xe) and [ X,4) are invariant un-
der arbitrary group (G . Using (5) and (12), it isn't

difficult to show, integrating by part that

(.@:‘(xf) + 9,_()‘4) g 5 o@{(ﬁ)f‘.@{(h)) G(Xij Xz;jk'.ﬁ, X-y)= (16)
= ( Di(x) + D)+ D 06) + Y. ( Xv))( zhs. aj{ 15))'-.: g

From (16) it follows that r.h.s. of the equation

(15) have the same transformation properties under
group (3- as the l.h.s. of (15). Therefore, the equa~
tion (15) is invariant under the group ( . The inva-
riance of the equations (14) under the group (¢ is
proved by the seme manner. We emphasize that group &
is arbitrary Lie group (it may be a group of space=
time trensformations or & group of the internal sym-
metries such as SU(® or their combinations).

Tnus, the homogeneous Schwinger-Dyson equations
are invariant under arbitrary Lie groupx. This result
ic easy generalized to the case of the arbitrary i
teractions (at least polynomisl type, such as Yﬂ,
Yye ., (//(pt//q/ and so on).

Since just the same homogeneous schwinger-Dyson
equations (for example, equations (13), (14) possess
the invariance under different groups, these equa-
ticns permit solutions with different (in general,ar-
bitrary) symmetries.
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"t also follows from the invariance of the ge-
nerating functional under arbitrary Lie group.
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Hence it follows that any solution of the homo-
geneous Schwinger-Dyson equations is continuously de-
generate. Indeed, a solution which is not invariant
under a group is degenerate by the usual reason: ac-
ting on this solution by some group of'symmetry of
the homogeneous equations we obtain a continuous sef of
the solutions. Let us now consider the solution of

these equations which is invariant under some group6:.

Among all groups of the symmetries of the homogene-
ous equations always exist the group Gz (really,
infinite number of groups) which isn't a subgroup

of the group (Gi s 0 that the considered solution
is not invariant under the group Gz . Acting on
this solution by the transformations of the group Gz
we obtain also the solutions of the homogeneous equ-
ations. As a result the continuous dégeneracy of the
solution appears.

In particular from the continuous degeneracy it
follows that the homugeneous-SchwingereDyson equa-
cions have an infinite set of the conformal-inva-
riant solutions, i.e. the system of equations for
scale dimensions and coupling constant® [5, 8, 3] is
degenerate. This result follows from the previous
reasoning if G;t igs the conformal group and Gz is
the group which can change the scale dimension.

At last, so long as the continuous degeneracy of
the translational invariant solutions is equivalentv
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to spontaneous break down of the symmetry [ﬁQ] any
translational invariant aolution of the homogeneous
Schwinger-Dyson equations hes to contain Goldstone
particles.

In conclusion we note the following.
Just as from the conformal invariance follows the
form of the two~ and three-point Green's functions
one may consider the group which give the possibili-
ty to determine the four-point function. Then, for
the theory (¥ (for equations (13) and (14) ) it is
possible to formulate the program analogous to the
bootgtrap program for three-linear interactions [E,%].
The equations (13-14) may be rewrite in the terms
of the spectral functions just as it has donme in [9] .
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