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Abstract,
The following topics are discussed in this paper: 1) the

fimal state imteraction of secondaries; 2) inclusive and exclu-
sive spectra; 3) the probability of particular chammels produc-
tion; 4) the composition of secomdaries; 5) the Fﬁ_ distribu-

tion and compositien at large P—L ; 6) the principal questioms
of the statistical appreach; 7) Ericsom fluctuations in twoe and
manybody reactioms; 8) the interference effects of the idemtical

pions,
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1, Introduction=
The multiple production of hadroms is very complicated phe-

nomenon and although it is known for many years its intensive in-
vastigationa'hava_begun dnly recently. The_firsf reauoﬁ for it is,
of course, the diffieu;tg - of its experimental studieé. But there
is another important difficulty, nﬁmely the need for the adequate
language for its description, One crucial point was the transition

%o inclueive experiments, in which only one (tto etc.) particle

18  detected. The language of the statistical physics, which we
explore in the present paper, seems to be quite adequate to such

a situation, The inevitable averaging over many unohaerved vari-
ables becomes an ally on the way to the construction of the descrip-
tion of the phenomenon, both simple and general, wﬁile it is an
enemy in the detailed dynamical approach.

The history of the statistical theory of multiple production
can be traced to works of Heisenberg /1/, in which he first assumed
the mixing of the secondaries up to thermodynﬁmical equilibriumn,
The first particular statistical model has been proposed by Fermi
/2/. But as Pomeranchuck has noted; this model is not logically
consistent because the interaction of the initial particles is as-
sumed to be strong, while the interaction of secondaries is not
considered. The Pomeranchuck model is based on the idea, that the
observed properties of the secondaries are determined on the stage
of the process, which we call the final stage, just preceeding the
end of the interaction and the free propagation of the secondaries
from the collision point /3/., The condition of this stage has been
given by Landau /4/: the mean free path of secondaries becomes

of the order of the system dimensions, This condition is familiar
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in many physical problems, e.g. it determines the visible teﬁpera-
ture of stars, -

The interaction between secondaries must cause some collective
effects, which according to Landau /4/ can be described by the re-
lativistic hydrodynamics., The most speculative point of the Landau
theory is the special assumption about the initial stage of the pro-
cess, which we discuss together with its observable cnnéequences
elsewere /5/. In this paper we deal only with the characteristics,
determined at final stage. The reason for such separation of the
material is that the present discussion is consistent with the wide
range of theories, including the multiperipheral and the parton mo-
dels. Ou* treatment of the problem can be coﬁsidered a8 a complemen-
tary to these models, for they do not consider seriously the final
stage interaction.

The Pomeranchuck idea has been shown to be in agreement with da-

ta /6-8/ and the present paper moves this comparison a little further.

We discuss not only the average properties, but also the deviations
from them which can be described by the standard theory of fluctu-
ations. First we discuss the low energy case (ELHB =1+410 Gev,) and
then proeeed to high energy reactions. We discuss also some pheno-
mena at large transverse momenta, in which they are considered as

a consequence of the particle "leakage" before the final stage. A
large part of this paper is devoted to the discussion of the princi-
pﬁl questions of the statistical theory, e.g. what the equilibrium
and the statistical ensemble means in this case, what is the preci-
sion and the applicability limits of the theory etc., which are very
little discussed in the literature., Of course, we do not claim to
give the final unswers to them, but hope that our discussion will clari-
fy them somehow., Our ideas in this direction are very close to those
known iﬁ the nucleaf reaction physics. The last chapter deals with

S

another question, principal to the theory: to what degree are there
the produced pions coherent? The new interference axperimﬁnta are
proposed in order to mé%ure the lifetime of the system created in the -
collision. In all discussions we pay more attention to the main
arguments and concepte, presenting the particular fornnlae and their
comparison with data mainly as an jllustration to the text.

One more comment con@erning the statistical bootstrap model /9/.
There is no direct contradiction between this approach and ours.

The decay chain  -of this model can be considered as some particular
mechanism, leading to the discussed final stage. Many particular
predictions of these appreaches coincide . But the approach, used
in this paper, needs neither rather arbitrary sssumptions, like the
bootstrap condition /9/, nor the use of the Beth-ﬁhlenﬁbck method
in the cases, where it can hardly be justified. So it is more gene-
ral and more simple and thus seems to be more preferable.

2, _The Final State Interaction.

Let us begin the discussion of the statistical theory from
the most simple case of low energy reactionms, that is those with
C.M, energy of the order of one Gev. In this energy range most of
the secondaries, with the exception of the so called leading ones,
have almost isotropic angular distribution., So in this energy range
one can assume that the secondaries form some common statistical
system. In the case of high energy reactions the equilibrium, if any,
takes place only in local sense, as we discuss below.

According to Pomeranchuck /5/, the observed properties of the
secondaries are to a large extent determined at final stage, just
preceeding their free propagation from the collision point. This
is due to the fact that the strong final state interaction "mix"
the sgﬁtaﬁ so that it "forgets" the preceeding stage except some
global integrals of motion . In particular, the kind of the initial

particles is not of much importence- the well known factorisation
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property of ihn_ Mdmnic production, The seme property is known for
the muclear reactions which proceed through the compound nuclei
formstion, Of course, there must be also some nonequilibrium effects,
to which we return in the chapter 5, ’ _

Now we proseed to the derivation of the quantitative condition
which determines the properties of the system at final stage. The |
n‘rgminntation in /3.6/ is the following: the particles become free
when their spacing reaches the maximum range of the strong interac-

tion, something lika m *s In other words, tha final stage is charac=- '

terized by the particle density

N o /] -3 '

4N = V ._.m |

n 7 ) i / 3 _ (1)
where N is the total particle number and ./ is the volume of the

i
Ili

system at final stage. We can not agree with thes¢ arguments. First,
the range of the interaction between pions and kasons is not m: but
rather something like m’;
particles can not exchange pions., But the condition itself is not
also correct. According to landau /4/ the final stage is determined
by the following condition: the mean ﬁuo path 15 is of the
order of the minimal system dimensions [, . Indeed, the case

f« me implies that the particla's are "closed up" by the interaction

s for due to the negative parity these

and can not leave the system, while in the opposite limit [ » Lo

they can be considered as free particles **, But it turms out, that

* We use unitp: h=¢ =1 _

.**The Landau condition i_hpiias the slow system expinaion and neglects
the surfage effects, The more exact determination of the final stage
paramet. ‘e needs the ‘diacuasiaﬁ- of the kinetics of the process, _which'
remains to be dome in the future, :

edie St Nk P arelthe energy and momentum of the particle, 9=25%1

7e

- numerically this condition practically coincides with (1) since the

cross section of the interaction and [ are of the order m';f

mint
and m“"{' reﬂpecti?ely. With this mrning we use below fhe condi-
tion (1). Note the pi'incipal difference with the'remi.nodel. and
their modifications: it is not the volume .':hit.}h is fixed, ’but'- the
intensive quantity- demsity.

The evident consequence of our discussion is the thermal
distribution of the secondaries in inclusiﬂ spectra .

dN = [exp(3) +1]" (j;”Y ' @)

;
S is the particle spin, V is the volume at final stage. The
value of the temperature according to the diacuuaibn above is of
the order of '?hr' As an illustration of the validity of (2) we
show at Fig.1a thedata /10/ for h&? collisione at 12Gev. and at

Fig. 1b the data /11/ for p‘p annihilation. Interesting, that

the accuracy of the data is so high, that the difference between

(2) and simple exponential can be seen. Note, that the temperature
value is the same for pions and kaons., The data on other low energy
production look very similar,

In order to make the calculations of the properties of the
system at. final stage one needs to take the interaction into acco-
unt, In our approach, based on the Pomgranchuck idea, this prob-
lem is not so difficult as in other statistical models because
we are interested only in the final stage, at which the density and
temperature is not high and the proparties-of the strong interaction
is rather well known. |

As it has been proposed by Belenky and Landau /12/ one can use

the Beth-Uhlenbeck method /13/ of the nonideal gas theory. Its
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main idea lies-in the counting the number of the states in the sta-
tistical sum as with the account of the acattérindbhaaa caused by the
interaction. Thalnoat gimple result is obtained in the case of pure-
1y raaomﬁa. interaction and when the resonance width is much smaller
than thalltnmﬁeraturs. In this case the problem is reduced to the simple
case of the mixture af noninteracting_ gases of stable particles to- -
gether with resonances. ‘Fote, that the Bolismann factor €X P (—* m/ T)
makes the strong cuteff of the heavy resonance contribution*, so
practically only ¢,&)  give the noticeable contributign to the
number of pione and Y to the number of kaons observed.

' This method ies aleo used in the statistical bootstrap model /97.
Some criticism of this model can be found in /5,6/. Let us mention
here only one poimt conceming the applicability limite of the Beth-
Uhlenbeck method. This method gives the second coefficient of the virie
al expansion, which is the expansion on the following parameter: the
w8

range of the interaction Taﬁ‘dlvided over the particle spacing N

The rough estimate of this parameter value at the final Etage is ac-
-1 -

‘? | n 3“ mn— b |
the expansion parameter is mrr/mf' Thus, although it is not very

cording to the discussion above 7, . ~ /77 80
emall and high accuracy can not be claimed, its use is justified.
In the statistical bootstrﬁp model this method is essentially used
up to very high density, where its even qualitative validity is
doubtful,

Finally, in order to give the idea what the hadronic plasma at
final stage dooks likeé, we note .that it is the nonideal gas rather

* Unless the resonance e_lpectm grows too at'rongly; as in the statis-

tical bootstrap model. See the detailed discussion of this in /5/.

9.

: | v
than liquid with particle separation of the order of mn and

o

intensive interaction at distances m;- . This gas 'ia i pa’rt-—
1y quantum one, since the wave length is of the order of particle
spacing. The main interaction is the intensive pfodugtion and

dissociation of the resonances. The known methods of 'hhe statisti-
cal mechanics are sufficient for the'deteminat_inn of the proper-
ties of such media, to which we proceed in the next chapter.

3, The Thermodynamice at Final Stage,
All average characteristics of the hadronic plasma at final

stage can be found with the help of the integration of the ther-
mal distribution (2) and with the account of the reasonanches as
it has been explained above, It is useful to introduée the follo-
wing standard functions /4/:

AT (9P [oxp (£ (= 8g(m) o

'(er)J 21r1 e LR

€(7) 5 ZI (213 Et,[exp (32)+ I]E% 2772 CR ) W

1 (r)= T-P(E)/F(%) (5)

The physical meaning of these quantities are the particle and ener-
gy density and the average particle energy respectively. Their
analitical representation and tables cen be found in /4b/. Note
that in the nonrelativistic limit T<Km, ;= M + % i

and in the ultrarelativistic case T >»> M, X.= 3T o At final
stage Tx /|1, S0 the average pion energy xr(mﬂ)zueo Mev, This
results, for example, in the fact that the average multiplicity
at P'Fi annihilation at rest ia close to 5., Other predictions,
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following from these formulae, are discussed in /6-8/,

Eow we proceed to the discussion of the deviations fromthe
average values, described as  thermodynamical fluctuations. We
consider the example of the particular reaction channel "4 " rea-
lisation for there are a lot of data of this kind. The channel
means the production of the definite set of secondaries N;a) of
‘the kinds ";". The distribution of the secondaries over momenta
is, of course, also thermal .

d il M[ P(__AT) ]-i (6)
£ B (gr);l :
but with the aﬁt of chemical potencials /mQF’. It is important,

[ul

that the values of M Eﬁ all depend on the channel in question.

There are two normalialng conditions

| N;d]: j’dN;ft:J :Z J'El le-m} . ()

which can be used foriﬂimj

and Iq determination., In order to
determine the last parameter 1{; some physical_condition must be
introduced prescribing the character of the fluctuations discussed.
According to the considerations of chapter 2 this condition is the
fixed density of particlee, or in other words

V{z"{'zfv;mi (8)

So everything is fixed and (6) can be compared with data.

The more important point is that we can find the probabili-
ty of this channel production. It is the ratio of the phase space,
corresponding to this channel, /[, to the total one l;f:éf;' .

The thermodynamical expression for the phase space is

e { I‘l"tl (2rﬂp,‘ 2} exp[S (/q““ ] (é)

Where }2{ are the four coordinates of the total momentum, their

14

2 2 . :
8Verage fluctuation dﬁ E(Pi)~<u) can be found from the integra-
tion of the thermal spectrum (6). The quantity S(/u TV) in the

exponent is the entropy of the sgstem, which in our approximatiun

can be taken as that of the mixture of gases:

_5 (9:d%V 1 %*M"E:) i
S(krv)=2 e ™ ot i fh)+ 1] b

Note that the formulse (9:ﬂ0) are very similar to those used for

the statistical calculation of the level density of nuclei in the
Fermi gas model.,

In order to make these formulae much simpler the following

-approximation can be made., For all particles but pions the term

exp(%) LG 80 the unity in the denominator of (3,4,6,7,10)
can be neglected. Moreover, it can also be made for pion term
becauée due to factor }32 the main contribution to the integral
is given by the region }9 =2004400 Mev/c in which the exponent is
several times larger than unity. In other words, we proceed to
Boltsmann statistics (which we discuss in the chapter 8).

In this approximation the equation for JA¢“I(7) can be easily

solved and substituting the result into (10) one has
fal

= const . [ﬁ(zmp,{ ]{ﬂ [Varu(m)]" ; exp( ":fm‘) (11)

(CH
Nt

LT

Note that the similarity between this formula and the Poisson dig-
tribution is misleading for "E; is determined from (7) and itself
depends on the channel. | |

The comparison of the bredictions of this formula with data
for pp ennihilations into pions and kaons s presented at Fig.
2. The only pgraﬁetar is bg',taken just to be %gﬁn;i « The agree-



12.

ment (except at high emergy aﬁd)is rather good if one notesthe
-crud;aas of the model, the absence of the free parameters and
- the 5trong dependences like V”M-N . « In the 'p.resen"c calculation
wu'accuunt'fur.pr-daxponent in contrast with /7/, which.makeﬁthe
egreement for small N a little better.
Concluding thia point we note, that the nontrivial element
of this calculation lies mainly in the asaumptioﬁ (8); The method

for the phase space calculation can, of course, be subatituted by

another one. We prefer this method /7/ because it is simultaneous—

ly precise*® and physically transparant..lt can be used for the de-
rivation of the useful approximations in the particular cases,

Let us discuss the following example, the calculation of the
average number of some particle of the kind " . ". The probtability

of the simultaneous Ni and /er production (ac:cording to (11)

divided over that of Nrr Production only is:

oM T AL f i
Wy, = L [vhm] [ﬂ;(m] exp|E, (T-T)] @2

where T and T, are determined by the equations

E,, =N (T + N X (T) = Ny X () (13)
When the energy of the particles "/ " is much smaller than that of
pions, one can expand over .I%:} The identity
a
T  dun.(m
; R Ll ¢ RIS (14)
x.(T) )~ dT |

following from the definition (3.5)-can be used and the result up
to the first order of- L_T°  1s the Poissonian aistribution

e

Jwe, .

* We have checked that (11) gives the'coefficients in &y /7  ex-

pansion (which are functions of the tntql‘anergy'and the particle
masses) for terms ANZaN, NV, /N,  const. So it is as

precise as the famous Sterling'fornnla and can be used even for

N= 3‘-7"ft

128

W ;%'[Vn‘.(-z;)]”" TRl I

which has a very simple meaning: independent fiuctuatinns,_namely-

the particle " ( " productions, in the thermostate - the pions, The

average number of particles ™! " is
NS AT | - (16)

This formula is the same as the known macroscopic one, but note

-that their applicability limits are different. The latter is valid

for a.l particles in the case whén the system is so large that

( N.:f):’} 1l s and the derived formula (16) fdi- neutral particles
only but for any {N.) , even very small, implying that the whole
system, or (}Vﬁ} , 18 large. The word"neutral means that it has
no other quantum numbers than those of pions, so they can be dire-

ctly produced by pions, This is so for particles like Q,cd but

| not for P{Jjﬁ s which must be produced in pairs. We return to this

case later, in chapter 4.

We finish this chapter with the remark, that the further we
g0 in the description of the system, like flucthatinna, the
worge is the accuracy of the statistical theory till finally we
approach its applicability limits, It is not known when it will
happen, some estimates will be given in the chapter 6.

4, The Statistical Theory Applications
for the High Fnergy Collisions,

The secondaries produced in the high energy collisions are
distributed unisotropically. Different theoretical approacheés
explain this fact in different ways. But in any case, there must
be also some final stage of the process, which has properties
similar to the low energy reactions., In this chapter we try to

reveal the characteristics of the process, which are determined
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by_tha finnl'atage effects, and to stndy them with the help of
the statistical theory. |

It is more convenient to conaider the production reaction
backward in time for we are interested in the rinalfstage. So -
- we begin from the free secondaries at distance, mnving into col-
lision point. Let us d&vide particles in some groups according
to their rapidities., Clear that these groups are also separated in
space, the more Elowlparfiblea closer, the more fast at distance.
The vnluine, -occ_upiid- - by any of thase groups shrinks, .ao at some
stage the_interadfion starts, The condition for it, expressed in
the accompanying frame, is-again the Landau criterion: the mean
free path is comparable with the minimal system dimanaioﬁa. alre-
ady discussed above, The minimal dimensione are the transverse ones
which are still of the order of I?i; « 50 again the condition
in question corresponds to the fixed. particle density of the or-
der of .!Tli « Let us also assume the thermodynamical equilib-
rium at_thia stage. In contrast with the case of the low energy
reactions, this equilibrium is only local since for different
particle groups it takes place in different reference frames and
even At different moments of time. Of course, in such a system
the-equilibrium can not be exact due to dissipative phenomena
like viscosity, but we still discuss this as a first approxima-
tion.

The assumptione made lead to important predictions. Pirst,
if the motion of the. mentioned groups is longitudinal, the t¢rans-
verse momentum diétributinn. is.ﬁot affected and so it must be
given by the thermal distribution with the temperature of the or-
der of rnw...kirat this fact has been discussed in /4/, and then

in more details by Hﬁgbdorn /9/. Let us show how it is comnected

15.

with recent experimental data from ISR CERN /444 plotted at

2 : - .
Fig. 3 as dN/dpJ_ versus M, - (Pf+ ”?2)1/2 for JT, KoK, P
The variable Ph* iz useful because the thermal spectrum for all

kinds of bartitlas is expressed in it by the single formula

T AL AN
TR T2 S YA

plotted at Fig. 3 by the solid line. ne can see, that the depen-

dence (1?)'really takes place for any particles and with ‘he va-

lues of the temperature, very close t, each other.

Ancther less trivial coneeguen:e of the hypotesis of the
lotal equilibrium is connected with tie calculation of the com-
position of secondaries /8/. The maia idea is that the motion
of some volume element does not affect the fluctuatiom in it and
in the thermodynamical sense the whole system in question is equ-
ivalent to hadronic plasma at rest in some effective volume 1£~ ’
equal to the sum of all volume elemerts taken at final stage. The
calculation of ‘%#. needs the application of the particular theory
and in our final results 1@# will be excluded.

Since such particles ag K, ﬁ are produced inppairs due to
the strangeness and barion number conservation, the formula (16)
can not be applied. The probability cf such pair production can
be taken from (15). The avetrage number of such particles can be

eagily computed from (15) with the 1esult

< N-> & _ 2 n,,-('raMg 'I;; (m:(mVeﬁf) (18)
-1 . 21—0 @’U‘G )‘Vp;,;') 3 1 -

Here I, [, are Bessel functione, the additional factor 2

corresponds to the number of the isospin states, say D can be
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- produced together with L or P « In the case of the large sy-
stem Vs oo (K= n(mw , 88 it should be, while in the oppo-
site limit V# 0 <M= 2)7 (T)V /96,6/. For pions the former
case is aasumpd, and this allows the determination of the D@# :
V;F =L N )/}zﬂ(';;) o Thus the formula (18) can be understood
as the universal connection between the number of U end F with
the number of pions ¢ Nﬁ> o The corresponding curves for diffe-
rent values of the temperature are plotted at Fig.4 together with
data available /15/. The character of the dependence is indeed
reproduced rather well and the better agreement is found for tempe-

rature value close to those obtained from the study of the E’L dis-
‘trihu‘biﬂn- |

2+ Fhenomena at large transverse momentum,

In the discussion above we have used the assumption that
the secondaries are closed up in the Bystem before the final stage
and everything is determined by the equilibrium final.stage ther-
modynamics, Certa%ly, there -must be also some leakage before the
final stage, resulting in the nonequilibrium effects /6,8/. The
better place to find them is that one, where the contribution of
the equilibrium effects is small, for example at large P. -

In the discussion below we use the following special as-
sumption: at intermediate stages of the process, preceeding the
final one, there is also thermodynamical equilibrium with tempe-
rature higher than 'Thh_.,This is so in the hydrodynamical theory
of Landau /4/, but this assumption still is less strong than that
lying in the basis of this theory, We are going to show that this
assumption can explain some phenomena recently observed at high
qu , at laaat'at semi- qualitative level,

Let the normalized probability of the particle leakage
at temperature T is W(T), The essentisl point is that it
ie taken to be independent of the particle kind. The transverse

17«

momentum distribution can be written as

dv; . exp(3E j dT W(T) N, (1) exp(- &) (19)
dP.L ZT_, (m {m) T
The first factor stands for the normalization, N rr) is the particle

number at temperature T , the exponent is the formula (47) for
_MJ_ »T . The function \W/(7) ies assumed to have a peak at
Tt in order the discussed above properties at small O, be
valid, But as far as /™M,  becomes larger, the interplay of
W(T) and Gwp{ .:__'f-&) moves the peak of the integrand to some 7;#
higher tL.n 7;;. This must result in the gradual dgcrease in the

~8lope parameter of the dN with ™M, -, ﬁll'ch is indeed seen

tP_L
in data /14/.

The more interesting data are concerned with the compo-
sition of the secondaries at high P, . Let us begin our discus-
sion of this point from some "zero order approximation", in which
the NG(T) dependence on 7L is neglected compared to that of
other factors in the integrand. In this approximation the parti-
cle composition is /™, independent. And indeed, the particle ra-
tios change with M, much less rapidly than their absolute
yield., As the next approximation let us take h{({;ﬁ) , Where 7;#
is the saddle point of the integral(19). Now the composition
changes with P{L because it changes ‘Q#‘ e It is interesting,
that due to M(T)dependencdon T , 'I:rllm-"-,"?;‘!ir is also a little
bit different for different particles, increasing slightly with
particle mass., This effect is indeed seen in the discussed above
data for small Fa; Tange.

Now we proceed to the more detailed discussion of data.

Unfortunately, it is not easy to make our model really quantita-
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tive, first because 1Eﬁ== 0,340.5 Gev. at wh = 445 Gev.
and many resonancaes must be taken into account, and the second,
tha composiiion is very sensitive tn the value of T;; in the larga
bql range., So the accuracy of our discussion is within fhe fac-
tor of two.

Since -1;g inéreaaes with Jvh. s the increase in
heavy particle production is predicted. As we have discussed in the

: chapter 2, the most of such particles are resonancles,'#kch then

decay into stable partlcles, pions and kaons. The estimations show

that hh‘ ratio _remains on the level of 0.2 for any ﬁ{L y in
' | s |
agreement with data? The behaviour of £ is more interesting,

n .
with the increase of the Tpy 1t firet increases, and for [w>0J*(f,

decreases, because the contribution of the resonance decays into
namber of pions increases even moge rapidly with E’. than /Vra- ‘

This behaviour is also in agreement with data, although the absolute
value of this ratio is found to be a fector 1.5+ 2 smaller than the
data. In the estimate we use resonanceg from the Particle Data Group
Tables, althnugh such ecriterion for an account of resonanaces is
rather artificial, The quantitative method for the calculation of
the thermodynamics of the hadron plasma in such conditions is still

unknown.

* Note that in data /14/ the particle ratios at fixed }QL are pre-
sented. Thie causes the dip of this ratios at small-}gL", which
(acca.rding to the discussion in the chapter 4)is absent in M, vari-
able. Of course, at high P,  the difference between D and i

: disappears,

19.

6. The Principal questions

of the statistical theoxry,
In spite of its rather lomg history, the statistical theory still

remains at the initial stage of its development, The principal qu-
estions, concerning the proof of its basic assumptions and undersian- .
ding of the épplicability limits, are still bpen. 0f course, this

is not oé@sional, since even in the case of classical systems, for
which the dynamics is known, the similar problems are not also comple-
tely solved., The better argument in favour of the statistical theory
now is its agreement with data discussed above. In this chapter some
discussion of the principal questions will be made, or more strictly,
of the way in which they can be posed. The strong analogy with the
statistical thaury of the nuclear reactions runs through all this dis-
cussion.

Let us remind , that the statistical description always deals
with some @nsemble of the systems, in which it determines the dis-
tribution of different quantities. Thus the proef of such theory
must inelude the determination of the ensemble, corresponding to the
conditions of the experiment, and the proof that the distribution
is indeed that given by the theory, say canonical or micrdcanonical
oneg.,

There is important difference between the application of the
statistical theory to some subsystem of larger system and to the
whole system, In the former case the statistical ensemble corres-
ponds to all states of the rest of the system. Such problems are kno-
wn as Brownian motion in classical case and the determination of the
density matrix in quantum one. In the case of the production reactions
this corresponds to inclusive reactions. It is interesting, that the
canonical distribution for subsystem can be valid even if the whole

sysetem behaviour is not statistical, The classical example of this
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kind ies a particle motion in the system of coupled oscillators. The
situation in particle production may also be of this kind, with the
statistical behaviour due to the averaging over many unobserved vari-
ables, |

The more difficult questions arise in the discussion of the sta-
tistical descriptionof the system as whole, Such situation in produc-

tion reactions corresponds to exclusive studmies when all secondaries

afé7detécted. Even the formulation of what is the statisiical ensemble

in this case encounter difficulties. In the classical case it is made
for the stochastic égstems, that is those with unstable trajectories.
The ensemble corresponds to external perturbations, which in contrast
to the case of Browmnian motion, can be arbitrary small. This approach
has reva#ﬁd the statistical nature of even rather simple systemc~ like
the nonlinear oacillafggwg%gd’.ln the works /18,6/ the same ldea is
proposed to hadronic and nuclear reactiions. The assumption is made
that the reaction amplitude is exponentially unstable to external
perturbations. We do not use this very strong assumption, for we

see no evidence that it ic the case. The recent observation of the
Ericson fluctuations /21/ is also against this assumption.

The property of the classical systems we are going to explore
is the se;fmixing /16/. 1t means that in the system cvelution the
states, initially occupying small region in the phase space, become
distributed im very complicated end irregular way. The coarse grained
distribution, averaged over this irregularities, approacﬂ%ﬁonstant,
that is, becomes microcanonical,., This dynat contradict to Liouwille
theorem, the volume of the true distribution iq conserved while that
of the coaraﬂgraiﬂh one.increaaea. We remind this well known fact in
ordes to stress ite strong analogy with the discussion below.

21.

-The analog of the aelfmixing in our case is the strong and irre-
gular dependence of the transition amplitude, the S-matrix, on its
variables, If the pf%iaion of the experiments is not high enough, the
coarse grained distribution is found, which may be described by the
statistical theory. The principal difference with the true stochastic
systems lies in the fact, that with the accuracy increase one can
reach the region of the dynamical behaviour, while in the case of
unstable system this is impossible to do, Note, that according to
estimates below, this difference is not of practical importance,
since the nessesary accuracy in the multiple production seems to
be out of reach.

The importance of the amplitude irregularity can be also under-
stood in other way. Note, that the derivative of the amplitude over
energy is connected with the characteristic duretion of the prnbeaﬁ.
This is known, for example, for elastic scettering in which 7 = dde)

_ . G '
where thE) is the scattering phase, Thus the irregularity of the

amplitude means long duration of the process, which may lead to its

mixing up to equilibrium,

The general reason for irregularity of the amplitude is that

‘the system, created in the collision, has many ways for the decay

into secondaries. For example, different intermediate resonances
of some groups of particles can be formed. The interference of these
possibilities causes irregularities with the characteristic parame-
ter - the width of the resonances, The experiments reveal only
the most prominent resonances, while all other together form the
homogeneoue in average background in phase space.

' This situation has ceused the misunderstanding of'tha statis-
tical theory, namely the statement that this theory assumes the
amplitude to be constant. Such a situataon really takes place at the

threshold of the reaction, when the secondaries have large wavelength
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and are produced in one guantum state. In this case the secondaries
are completely covhereut (see the chapter 8) which is not so apart
from the threshold. This situation has nothing to do with what is’
usually understood by the statistical: behaviour. The constancy of
tha amplitude leads to the unphysical reault,‘that the N particle
production increag?iith energy a8 N particle phase aﬁace. The ori-

_gin of this misunderstanding is the confusibn of the amplitude with

~ the coarse grained distribution. The imaginary contradiction with

unitarity we speak about, ies the direct analog /6/ of the classical
paradox: contzast of the Liouwille theorem to the entropy groth. Another
miaundarstanﬁing is caused with the cofusion of the phase space of
the system during the process, say at final stage, with that at
infinity, just the product of d3p for independent particles, It re-
sults in wrong opinion that the existence of resonances contradicts
to statistical assumptions and also hfﬁera the studies of the . inter-

ference effects, caused by quantum statistics,

7. The Ericson fluctuations.

In this chapter we illustrate our general discussion above
by tha-consideratinn of the cases in which the amplitude irregula-
rities of the amplitude are known under the name of Ericson fluctu-
ations, We begin with the reactions like Jip and K}D scattering,
in which many resonances are known, then proceed to exotic channels

like pp 5

and K p and finally to some estimates for the many-
body »reactions,

Let us write the reaction amplitude in some partial wave

as a sum of the resonance contributions

(20)

Here - XM are partial and f} the total decay width§. Two !
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c&g¢es are possible, If the average spacing of the resonances ,9»
» [ , where [ is the typical width, they do mot interfere signi-
ficantly. But in the opposite limit D<</ i R bas i
noted /19/, the interference causes strong fluttuations of the 4 |
croes section, Ihdeed, 13t_3&c be random va;iables,'fhen th;_llpli-
tude (20) is also rendom, probably with gaussien distribution. The

cross section @ oc “”2 is then distributed according to the ' |

Releigh low:

dW(s) = ekp(— 6/6,) d6

(21)

Note that the fluctuations are large and the more probable cross-
section value is zero. _

The essential difference with this case is that of the elas-
and %:.wa:m‘[?m(zo) is positive
be random, then & .

tic scattering in which a= 4
for all terms. Let &IC
ted according to %%

becomes distribu-
distribution with 24/ degrees of freedom,

where N is the number of overlapping resonancés.

N~ [/D

and the fluctuating part of the cross section 3F

(22)
is emall: 6 ‘e
rulSYTV} These estimates, presented in /22,23/ are in agreement with
data /21/ if one uses the exponentially riging resonance spectrum®

It is interesting to seeg how the transition to statistical

behaviour settles from the low energy end. When resonances are sepa-

* It was taken from the statistical bootstrap model /9/. Buf in fact,
only the constancy of the témperature is needed, so Pomeranchuck ap-
proach fits also well, It can be easily seen, Q(E)OLE’}W-S(EJ and
since (S-= g_.l._g and T, =const, then S?(E)o( exp(.%_“).

n
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rate, the partial amplitude make circmles in the Argand diagram.
When they overlap the motion becomea more-complicated and finally
reminds the random walk, which can be described statistiéally. This
remintds-thg motion of the nonlinear oscillator in the phase space,
where the criterium for the statistical behaviour is the same - the
overlapping of the resonances /17/. As discussed above, in the elas-
tic'acattering the amplitude of this random walk is very small com-
pared to the nuhfluctuating'averaga amplitude.

Ip the exotic channels, like }3’) s there are no resonan-
ces, The manybody reactions in such channels are, of course, still
1rregulaf for it is caused by the resonances of subsystems. And
indeed, the statistical models are as good for JP reactions as
farPP oﬂes..' There must be some trace of it in the elastic scatte-
ring also,in a furm.df the threshold singularities, say those due
-to reactioms PP+ M:*A/; s Where /Vf'z is some barion resonance.
Note, that such singularity although weak, still gives the infinite
derivative of the amplitude over energy and so cnrrespnﬁdﬂto the
long livinmg atate._Tha influence of such singularity decreases slow=-
ly from the threshold, so at any energy a lot of them "overlap".

Let us estimate their number woughly as

N- j‘gfw,).?(mz) G(E-m,- m;) cm, oy (23)

In this case the fluctuating part of the cross section 6 F o

_ V3
“opl g
at d =34 Gavg gnva ‘the negative resultd 20/.

Jand 80 it is not surprising that the search for them

In the case of the multibody reactions the fluctuations can
be large, but here another difficulty ariges: the number of the va-
riables is too large. Any avamging decreasés the fluctuations, so

inclnaive dath are smooth. The complete exclusive analysis with
-i———_—— }

¢ This is also trua for ruactiﬁna with close annnectiann batwuen
in and out stataa, like :lr P Jn .
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the necessary accuracy needs toohigh statistics. Let the typical

flucfuation parameter " be of the order of 100 Hev. and the typi-

cal energy E..ﬂ Gev. Then the total number of fluctuatlons in the re-

(V-1)(N+2)
action 2 to N particles is something like (£,// ) 2 nalogf So

the multibody reactions can hardly be used for the Ericson fluctu-
ations observation and thus the statistical descriptian is inevita-
bles As for the two body reactions, especially at large angles,
the fluctuations can be studied and important information about
the phenomenon, like the lifetime, can be obtained.
8, Are there produced pions coherent ?

Our first aim in this discussion is to attract the attention
of the experimentaliste to the study of the interference effects
which can give valuable information about the phenomenon. Another
one is to clarify the role of the quantum statistics effects, which
are little discussed and are the matter of quite controversial argu-
ments,

The term "coherency" is used in the same sense as, say, in op-

tics for photons emitted by some source. It means that there is
some special relation between the phases of quanta, so one can ex-
pect the interference effects. Unfortunately the wavelengh of seco-

ndaries in the hadronic production is too small to make the usual

interference experiments possible, But there exists the so called

second order interference, or the intensity interference, first stu-
died in optice by Brown and Twiss and then applied to the mé%ure-
ments of the star radii /24/. This effect meansthe following: if
one observes two quantg by two detectors, he can see their inter-
ference if they overlap in space and time, The last condition, or
coherency condition, is betier expressed in momentum and energy va-

riables, for it is what is mfﬁured in expafinnnta. The condition is:
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lﬁ*ﬁ,,ﬁ? < 1 /&)f*we./-r £ g (24)
where P, , ( GJ,IQ)- are particle momenta (energies), [ is the
dimension of the source and ¢ ' is the emmission duration.

‘The derivation of this condition can be found in any textbook.

As far as (24) is ?alid, the interference effect must be seen
in the two particle spectrum, the peak fof bosons and the dip for
fermions, It is the width of the peak which is of interest. The
ideas presented were developed in worka'/25-27/. The most détailed
theory, connecting the two particle spectrum with the space-time
properties of the source i=s developed in /27/.

Thus the question in the title of this chapter can be put
as follows; what is the connection between the reaction range K
and its duration T  and the wavelength ) 7 According to our
discussion of the low energy case (1) RWN;@/mr while the ty-
pical .l__—'— .i/(2='~3mn]. So the R eand T  are several times larger
than )\ and so pions are mdinly incoherent. In the high energy
case this is true with even better precision unless the short range
effects are considered.

The fundamental importance of this atatament.can be seen in
different ways. First it is consistent with our general discussion
of the amplitu&e irregularities because the number of the oscillati-
ons in any variable _ig something liku KR or WT ., As is esti-
mated in the pravioug chapter, it is rised into large power - the
number of- variables- so there is no need to have KA. W7 really lar-
ge in orderjtn‘statistical descripfi&n holds. Second, if piomns are
incoherent one may pass to classical description, say to use Bolts-
mann statistics, as we did in chapter 3. |

The opposite point of view, that the pions are completely
coherent, can also be found in the 1iterafure. . It 1B the con=-

fusion of the microcanonical distribution with the constant reaction

27

amplitude, discuseed above. Note, that in this case there are no corre-
lations of the Goldhaber type, which is not so experimentally. The
complete coherency is also assumed in the Heisenberg theory /1/ based
on the classical wave approach. In this respect this theory is the op-
posite case to the hydrodynamical model which implies the caﬁe of“inco."
herency. Let us mention to this end the attemﬁt /28/ to connect the
Bose statistics-effects with the multiplicity distribution, in particu-
lar with the positive value of the -Fz ={N(n-1)>- <n>° . Although
this effect  contributes into right direction, the degree of the co-
herency of pions seems to be too loﬁ-to explaine the data. On the other
hand, the multiplicity distribution can be completely explained
by the leading particle effects /5/, and the positive value of -f;
by the admixture of the diffractive processes /29/.

We finish this chapter with the following comment, The lifetime
¢ ©of the system, created in the collision, is of greate interest.
It can be measured as a width of the interference peak in variable
/a%_cgkl. There are arguments /27/ that this effect is more prominent
than angular correlations /25/. This is so because the random motion
of secondaries makes the lifetime larger than the system dimensions.
The estimations in the Pomeranchuck model in/27/ is T e N?f%/m;r e
In the statistical bootstrap model /9c¢/ the successive evaporation of

pions makes it even larger T JV,,- . The only available data on ’C,

that on Ericson fluctuations /21/ give 1large lifetime indeed,
T = 1/30 Mev= 6.6 fermi¥ The'interference studies of this quantity

seems to be possible with the available statistics at bubble chambers.
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Pig, 2, 'The productiem of particular chammels in PP  ammihi-

_ lation versus pLAB « The curves correspend to the calculations
b) The JI* distributiem im PP asnihilatien at 2.32 Gev. '

described inm the text, mormalised to total ammihilaiiemn cress
/11/. The limes are Bese distribution with T=130 Mev.

sectiem. The data are fnku from the compillation CERN HERA 70-3.
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Pig, 3, The tramsverse momentum distribution di / dpf_ versus
the longitudinal mass M_L: (p_f+ mz)”& . The solid line is the
distribution (17), the dashed ome correspond to experimental
distribution st ISR, "o", " x " and "a " correspond to K% (at
19 Gev.) , K- and F)_ ( ISR, /14/) respectevely. The K and 'P-

data are normalized so that they lie on the single curve,
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Fig, 4. The average number of K- and F versus that of pions,

The curves correspond to (18) at different temperatures, shown at

figures, The data are taken from the compillatiom /15/.
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