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abstract

Yang-Mills field is considered in the radiation gauge. 1tUs Hami-
ltonian is written down as an explicit function of independent cano-
nical variables in a form of series in the coupling constant. From
the consideration of the Feynman graphs arising from this Hamiltonian
a simple explanation is given to the necessity of introduction of ad-
ditional diagrams with fictitious particles under covariant descrip-
tion of the Yang-Mills field. The correct definition of the Yang-
Mills particles self-interaction current is obtained taking into ac-
count spatial spreading of arguments proposed by Schwinger. By means
of this definition polarization operator of the Yang-Mills field is
computed in the second order in the coupling constant. It is showm
that in perturbation theory Yang-Mills particles do rot acquire mass.




1. It is known that in quantum electrodynamics the usual defi-
nition of the current density as bilinear combination of charged
field operators taken at the same point leads sometimes to contra-
dictions/1/, As it was shown first by Schwinger/1/, the contradic-
tions may be avoided if one takes the charged field operators at
the points, separated by a space-like interval, and let this spre-
ading tend to zero at the last stage of computations only. For
this definition not to violate the gauge invariance of the current
density, one has to introduce additional explicit dependence of
the current on the electromagnetic field operators/1,2/.

The pointed definition allows to get for the photon polarizi-
tion operator /7/w (&'} an expression which in natural way satisfies
the requirements of gauge and relativistic invariance/2-4/. In
particular, the condition /10)=0 is fulfilled in perturbation the-
ory automatically in this case.

The Schwinger definition or the fermion current density was
generalized to the case of a theory with non-abelian gauge group
in the works/5-7/. This generalization allows to conclude that the
contribution of fermion loops to the polarization operator of the
Yang-Mills quantum /171,,; (K/ turns to zero at A= { y Just as it
takes place in electrodynamics. Thus, the Yang-Mills quantum can-
not acquire mass in perturbation theory by means of the interacti-
on only with fermion field. This conclusion is sufficiently evid-
ent since by the usual computation of /7, with Feynman diagrams
an expression is obtained which differs in the isotopic factor J“’w
only from the result of analogous computations for the photon po-
larization operator.

However, the question of the contribution of the Yang-Mills
field self-interaction current to the polarization operator of
this field seems by no means so evident/8/. Moreover, one comes
across the assertion/9/ that due to its self-interaction the Yang-
Mills field acquires mass in natural WRy even in perturbation the-

ory.




But in the work/10/ it was shown that in perturbation theory
the Yang-Mills quantum cannot acquire mass even if its self-inte-
raction is taken into account. Moreover, beyond perfurbation the-
ory the conditions of mass arising for the Yang-Mills field are
at any rate even more stringent than the conditions of the photon
mass arising discussed earlier by Schwinger/11/. The mentioned
results were obtained in the article/10/ by consideration of the
spectral properties of the Yang-Mills field Green functions and
the canonical commutation rules in radiation gauge, so to say in
an indirect way; the question of the concrete definition of the
Yang-Mills self-interaction current was side-stepped in that pap-
er.

In the present work the Schwinger definition is generalized
to the case of the Yang-Mills particles current. Then taking into
account the explicit form of this definition, the Yang-Mills qua-
ntum polarization operator is directly computed in the lowest or-
der of perturbation theory.

2. Due to well-known difficulties with covariant description
of the Yang-Mills field/12-16/, we shall consider it in the radi-
ation gauge/17,15,10/. In the present section, which contains for
the sake of completeness some results of the work/10/, we present
the description of the Yang-Mills field in radiation gauge. For
aimplicity we restrict the consideration to the case of the self-
interacting Yang-Mills field. Its Lagrangian density may be writ-

ten as
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The Hamiltonian density is written up to three-dimensional
divergence as

._d-—ﬂ’ 7 /% /f
From the equation (2) it follows that

di"=- J‘Z— — (9,,, ;‘r‘f:-f-éaf‘.‘?"’%”&’/: 0 (5)

Therefore, the last term in (4) may be omitted.
Impose now the radiation gauge condition

a4 =0 - L | (6)

and split the canonical momentum into the three-dimensionally
transverse and longitudinal parts

lie = fg +Gm P, O =0 (7)

Then the Hamiltonian density may be written neglecting three-din-
ensional divergence in the next form
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And. yd due to the relation (5) satisfies the equation
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Solving the equation (9) by the iterations in the coupling
constant, one can easily get the following expression for the
o ‘
snth term of the jﬂ expansion
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where for convenience the integral operator =
introduced. Inserting the obtained series in coupling constant
for ;ﬂ“ into (8), we express the Hamiltonian density through the
independent canonical variables ﬂ: and /0; as the follow-
ing expansion
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The first three terms of the séries were written down in the work
/10/ in the less convenient form. Taking into account the tThree-

dimensional transversality of the field, the canonical commutati-
on relations are

[ps ) 475 f/j:.-
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The expression (11) for # still should be symmetrized
over non-commuting operators. It can be shown however that the
terms in which the symmetrized expression differs from (11) redu-
ce to the three-dimensional divergence and hence may be omitted.

For going over to the interaction representatmn in the Ham-
iltonian density (11) it is sufficient to identify /b,,, with the
canonical three-dimensionally transverse momentum of the free fi-
eld, i.e. with the quantity =g, f,: . Note that as it was shown
in /10/, the interaction Hamiltonian should not be written as
N -product.

For construction of diagram technique in the formalism under
consideration, besides the Green function of the physical three-
dimensionaliy transverse quantum which is equal in the momen‘vum
representation to

‘meﬁjzr/;}”fgé : a.{m@/=5m“‘%§-'z& (13)




and is represented on diagrams by the solid line, it is convenie-
nt to introduce the Fourier transform of the integral operator

L g, A

(14>

which is represented on graphs by the dotted line.
‘Then along with the usual diagrams 1 and 2, the Hamiltonian

Fig.1. Fig.2.

(11) raises the infinite series of primary diagrams, the first
three of them are represented at the figures 3,4,5. The explicit
form of the primary diagrams is evident from the consideration of
the Hamiltonian (11),

i A oo

Fig.3. Fig.4. Fig.5.

The characteristic feature of the graphical technique under
discussion is, as one can ascertain easily by consideration of
the pr.nary diagrams, the absence of the graphs with closed loops
formed by the dotted lines only. In other words, in a closed loop
at least one line should correspond to a physical quantum. From
our point of view, this circumstance explains the necessity to in-
troduce additionary diagrams with closed loops formed by fictiti-
ous scalar particles and having so to say the wrong common sign,
the necessity that was discovered in the works /12-16/. Really,
under covariant description of the Yang-Mills field (as well as
in the radiation gauge formalism developed in /16/) the Yang-
Mills line on diagrams corresponds to the sum of the Green funct-
ions of physical and non-physical (time-like, longitudinal) quan-
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ta. Hence, in such a technique closed loop formed by these lines
is in essence a set of loops each of which contains, along with
Green functions that describe the propagation of physical quanta,
Green functions of unphysical particles. And this sum contains a
closed loop formed by unphysical quanta only, a loop which is ab-
sent in reality. Additionary diugrams introduced in /12-16/ are
necessary Jjust for cancellation of these superfluous loops. Note
alsc that the vertex which Jjoins a solid appendix to the dotted
cross-beam on the graphs of the type 4,5 in our technique coin-
cides with the vertex which joins a Yang~ Mills line to a loop,
formed by fictitious particles, in the radiation gauge formalism
developed in the work /15/.

5.Pass now to the question of the Yang-Mills particles cur-
rent. density definition. By the current density_‘/ﬁ?&f'we shall
mean the sum of all non~linear terms in the equation of
motion

T AU i

which can be written therefore as

—%(6/?'4!;_3!/4/:/# (16)

Hote that in distinction from the fermion current in theories
with non-abelian gauge group/5-7/, the self-interaction current
of the Yang-Mills field even without the Schwinger spatial sprea-
ding of arguments is not a vector with respect to isotopic trans-
formasions with parameters depending on coordinates. Therefore,
we shall proceed from the requirement that the equation (15) as a
whole must preserve correct transformation properties even aiter
the spreading of arguments in EFE operator products. |

Introduce the operator V 24 (I} which satisfies the equation
/18,16/

« - e} “(ry  wel
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The solution of this equation which satisfies The boundary condi-
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ion L i can be written as a series in the coupling
constant in the following way

>
v = Ja%-f-,%ffx‘/’! Z7 {f/j/"’m (18)
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The series (18) is evidently an analogue of the quantity
m@/d{,.ﬁ)fuﬁ// multiplication by which in quantum electro-
dynamics makes the operators of the charged fields invariant un-
der gauge transformations with variable phase vanishing at —e<
/19/. Correspondingly, the quantities Vd/%f/”/u’i/’/are invariant
under isotopic rotations with parameters dep?ding on coordinates
and turning to zero at — ee . However, V 7 /uy remain vectors
with respect to rotations in the isotopic space with parameters
which are independent of coordinates. '

It is clear now that the quantity 4 _’/..2’/ VK-?' -[/ yﬁ%s tran-
sfox_-med in the same way as %‘y KZ'/ Therefore /the equat}on of motim
on with the correctly defined product of /, and ,//.,.y is written

as . ¥ . | i .,
g“;é"/’/ +§f£/’;/fﬁ?’//i/ //:/V&'-g//’///w/r-g/:/ (19)
Using the relation

[V.-&/V&_gz/fd;: J‘rj—jjéﬂd"{, 5{/1_5 oA

which is obtained by the expansion of both factors in the left '’ X
hand side near the point &= é- , we come to the following equat-

o0 gl f=e)-
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To get the correct expression for bhe current density we
have still to define field strength %uf&) which themself depend
on the operators non-linearly (see (1)). This problem is complic-
ated by the fact that in .distingtinj}t from the equation of motlion
(15) which can be written as 9‘; y — d , where the covariant

T W g-;f_ga‘,ﬁ’ 2or” w0 Bgpinell . ¥
derivative - I - /J e 15 introduced, the expression
3
' /
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of
(1) for )4_,,, cannot be represented as covariant curl of sone

quantity.
It is convenient for this definition to use the matrix ope-~
rator

v )= £/7 Kﬁf/z“f"// 96/l + ,4 :
. (z) =3, - ipr4ita) -

Here ZT“;are uli matrices. Analogously to (17), introducing
the operator ﬂf} that satisfies the equation

4 V) = ig Vle) i) e

one can obtaln.correctly defined qnantlty 6‘252 é};}

-%y&/— /Y (x, - g@&—f}[}’&:-g/?“/’&j—
—9 d:r—.f/[ Vizx g}"‘“’/“'{zfj/ A iy ,.(24)
Vo 2-t)= § lame) et A~ig B0y P '= P

we do not dwell at length on the details of the computation: that
lead to (24), since the Schwinger addition tc‘/:;appears inessen~
tial at any rate for the computation of the polarization operator.
Combining (24) with (21) and comparing the result with (16), one
can obtain the final expression for the current density that takes
intc account the Schwinger spreading. But we do not write it down
explicitly since it is rather lengthy. ;

Note in conclusion that the obtained expression for /:/1/

should be symmetrized over non-commuting operators.

4, We begin the computation of the Yang-Mills field polariza-
tion operator from its space components. Using the usual reduction
rtormula and the space components of the equations of motion which
can be written in the radiation gauge taking into account the cur-
rent conservation as

ol

Ef:: a,f,,,/, (25)
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we get for the space part of the Green function 9,3,‘ 6&/ the

following relation

pDL (p) = i fbr &7 Yo (5l KTt 101

~ 8l ) doe (5) <[4, 6 1), 110 - _ o |
~de (V4 (36 [ ) 1O+ p T LA A B

We shall make the computations in the second order of perturbation
theory restricting to the divergent terms.

In the second order in the coupling constant the first term
in (26) corresponds to the usual diagram © that describes vacuum

- O__

Fig.b6.

pblariz.atian. Free Green function; (13) correspond to every line on
this graph, and the form of the vertex can be found easily from
the expression for the current in the first order in '

/f/ﬂ’/z {/f Phx )G L~ )2 5 b d/ (27)

When computing this diagram one should integrate firstly over time
component of the internal momentum, and then over space ones /3,44
The Schwinger spreading (it is sufficient to make it in one curr- |
ent only) leads to arising of the factor e‘f & under integral
so that %’"‘3 acts as a cut-off parameter. After rather lengthy ca- |
lculations we find '

e (B) e (B e P LT 1) f10)) =
3Pl St [+ LIl )
- s /0 272 2 10 2 /5252 : /b/.,-"-'/&?./g/
To compube the commutators that enter the other terms in (26)

ol 3
one has to express g‘,i and /{ through canonical variables. In |
g P !-i
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particular

5,8/(0) ~ -4 0)—
% -Z—é"(&é'/ﬂ;&,{f//r/ﬂ//i/&(a& 5///—// (29)

Here the Schwinger spreading of arguments is carried out also in
the expression for the zero component oI The current density in
the first order in i

/' fx) 2 *-{/é’é’ o /J/ (z—£/ é?f/ (30)

Using (29) we f£ind the following expression for the last
term in (26)

J¢ﬂ{"”60///y/7 2 2 /J 7z (31)

When computing with our accuracy the second term in (26),
one must take af'( equal to - /b: . Without presenting rather cu-
mbersome calculations we shall write down the contributions of
different parts of dﬁ/ into this term. Note once more that as
the computations show, the Schwinger additions to y 4o not in-
fluence the result at all. The only term in /b’" Gersy Which appe-
ars from the Schwinger definition of the current, is due to the

last term in (21) and equals to

p?eﬂ,/,,,., 65/3.—; £' 5 (52“)
i’fﬂ“{

The second term in (21) gives into cont butlona

0
two kinds. The first of them is due to the term -f W/ /& !/g/ 5/

and can be described by "bubble" - the Feynman dlagram P4 1V 18




Another contribution corresponds lto the term
—pyrd &
ij“ﬁ’éf/ﬂ/)/"; -é/;..“’ f/f"é'y?’ /] ﬁ_’/qu/q'f

in the current, is described by the diagram 8 and equals to

—J‘ 60/ fﬁ*{/bzéz / (34)

And the last contribution into /bé sy LTOM the second term in

(26) is due to, so to say, non-canonical part of the curfgnt that
ariscs when we take into account the non—llnearlty of Luy in the
first item in (21). The non- canonzc part o ﬂZ’ which is es-
sential for us, equals to ‘3’5‘{ ‘9/! j/ﬁf‘ and can be trans-
formed taking into account current conservaiion to the form

% : g ~14;08 L7 -
ﬂéyhfﬁﬂk-Zl‘?%&yﬁﬁsLéfp1"‘4 ; j/%{/z | .
Its contribution to (26) is des crlbed by the diagram 8 also and is
equal to

- .
-7, éb/ Jﬂ/b é v 25 (35)
Still there is the third term in (26)., But if taking into ac-
count the symmetrizsation of the current over non-commuting operat-
ors, it can be expressed through the vacuum expectation value of
the simultaneous anticommutators of 4 with /Q,/ which are evi-
dently equal to zero. Therefore, the whole this term in_(ZE) turns

to zero.
Introducing the polarization operator 4/7420)0f physical qua-

nta by means of the relation
o) = 6Pty (5) L
gﬁ"'&/ v P /Z,;aj_/g"
we find for it the following expressidn

ﬁ&/w 2-—.3/0 é/z;.?gz | | (37)

Taking into account the Schwinger term (32) let us obtaln the exp-
ression for /7/0} that indeed turns to zero at /l? =0 so that

the physical quantum does not acquire mass in perturbation theory.
The non- covariance of the result is due to the use of the radia-

(36)
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tion gauge and is discussed in detail in the paper /10/.

;é Pass now to the time part of the Yang-Mills Greem function

| ﬂ,’f . By this quantity we shall mean the integral operator that
corresponds to the "Coulomb" interaction between real physical
charges. In other words, it is dressed dotted line that turns on
the right and on the left into two solid ones. ‘

The dressing of the dotted line is described by the diagrams

Fig.9. | Fig.10.

9 and 10; the first of them is obtained by the iteration of the
diagram 3, and the second one - by closing the internal %on]/;}d ap-
00 o

| pendices on the diagram 5 /10/. Their contributions vo e

f respectively |

L 2 / |
) .?’-Z— "—/-" 4 Y (38)

P pt e
ok 29° /
_5/"35.._}4;1? (39)

Hence ﬁe get for the polarization operator /ZKWO:E’ the time-like

quanta taking into account the con't}ribution to g,,’,?b} of the dia-
| - o

gram 3, which is equal to -—J //-?—j /10/, the following express-

i0n oh
/1(o) = L5 p°t ;ég, (40)

The polarization operator /Zﬁ/ is defined by means of the rela-
tion /10/ P

= BT . _L___- n
AP = S hpr =

Note that the Schwinger terms do not contribute to /Z ?/at all.
The point is that the contribution of the diagram 9 which is equ-

al in the adopted approximation to
c/d/"rf_ V"y< 7;/;"/.1//2’/0/) (42)
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can be obtained by analogy with (29) by means of the reduction
formula and the equation of motion

o ‘ol
44 = fo (43)

But since the Laplace operator commutes with the symboi of T-or-
dering, simultaneous commutators do not arise here; so the Schwi-
nger terms are inessential.

Note that /Zc 60/ also turns to zero at /92::0 so that the
Coulomb long-range interaction of charges in the s tic limit is
retained even if the radiation corrections to ﬂ: are taken in-
to account. |

May this conclusion change if we take into account the radi-
sation corrections tothe Green functiun of the physical quantuw

and to the vertex of the dotted line transitiap into two solid

l1ines? The source of the dotted line -/ J‘J"?"ﬂdiffers from the
charge density /;"::- e"‘w&’ &‘:—ﬁ%ﬁ'—& ,/ in the three-dimen-
sional divergence only. Hence the space integral of this source
coincides with the integral of ﬁdrr , i.e., with the isotopic
charge operator which commutes of course with the Hamiltonian of
the system and therefore is not changed at all if one takes into
account the radiation corrections. The question how the radiation
corrections to the vertex and to the Green function of the real
gquantum influence the interaction on large distances, reduces toO
the question how the Fourier-transform of the quantity-iéwﬁﬁzgjgﬁﬁf
behaves at /5-1-0 . But this last quantity coincides with the
isotopic charge so that the radiation corrections do not change
it at all.

Therefore, given calculations show. that in perturbation the-
ory the physical Yang-Mills quantum cannot acquire mass and the
Coulomb long-range interaction of charges in the static limit
cannot disappear. |

Note that in the work /15/ the expression for the polariza-
tion operator of the Yang-Mills quantum in covariant gauge is gi-
ven. But the question of the constant part of the polarization
operator is not in fact discussed in the paper /15/ .

The expression for the polarization operator found in the
present work corresponds with the adopted accuracy to the resulv

15.
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of the paper /10/ obtained by other method. This fact supports
the definition of the Yang-Mills particles self-interaction cur-
rent proposed in the present work and simultaneously confirms the
consistency of the spectral conditions and canonical commutation
relations used in the paper /10/.

In conclusion the authors sincerely thank A.I.Vainshtein and
V.V.50kolov for numerous valuable discussions.
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