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This communicetion will present some results of the analy-
ticel and mumerical investigations concerming the sppearance of
stochasticity in conservative syatom of the type of weakly cou-
pled nonlinear nacillthor with Hamiltoniam *) ¢
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&=
where _Z; 4 Qk_m uanonimli varisbles and £ stands for a small
parameter of perturbation. By the term “stochasticity” I shall
briefly denote all the statistical properties ef the dynamical
system. A%f present we are stlll unable to understand completely
the nature of statistical laws - and hence the conditions of
their appearance. Nevertheless, there is apparently no doubt now
as to which type of the mechanical motion is the basis for the
appearance of the "real" stochasticity or, at lsast, of its very
similar imitation. That is the mixing motion with positive Keol-
nogorov emtropy. °*) Bo when I use the word "stochasticity”,
I'11l mean Just this type of the motion. The main problem to be
solved is the obtaining of stochasticity oriterion, e.g. find-
ing out the conditions under which the statistical laws start

*)Ienm considering here only the simplest case of the vari-
ables saparat:ion at £ = O . In general, the unpertmod.
 functions H nay depend on some slow phases &), (G, VE).
The method praaantad below can be used in this case as well

(see, for example, 1 ).

**) In my opinion, this was most clearly shown by Krylov ? .
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to act in a dynamical system. From the standpoint of appliea-
Ttions the stochasticity is the most dangerous instability of
nonlinear oscillations. :

For & broad set of mechanical systems there is a simple
stochasticity eriterion based on the presentation of the motion
&3 a geodesic flow along a certain Riemsnn surfece. Then the
everywhere negative curvature of this surface is a sufficient
condition for stochasticity. Unfortunately this condition is
not necessary at all and, therefore, it does not indicate the
real stochasticity-line. Particularly such a criterion cannot
be applied at all to the system of weakly coupled oscillators,
which is quite important from the stendpoint of applications.
In ths latter case the sign of the curvature for corresponding
Hiemann surface is always uncertain.

To obtain the stochasticity criterion for this case I an
taking into consideration the resonant inceraction between the
ogcillators of the system. It can be performed in accordance
with the following brief scheme.

First of all I will reduce the many-dimensional autono-
nous system (1) to the one-dimensional nonautonomous oscilla-
tor. To achieve that I can calculate the dynamical wariables
of the unperturbed motion ( £ = Q) as explicit functions of
tine: T, = comt; B, (t)= (@, (T, )d# + (p,. snd substitute
them to the perturbation term /(Y . As a result, I'll obtain
for each oscillator the Hamilboniam of the following type :

Hazﬂfj(ﬂ /+EHU(_"” ¢)ﬁ/. (2)

In the first approximation with respect to & one may consi-

der the osgcillators (2) as "independent", their coupling being
“ ¥ : &/ 7 B F

réalized vis "external" perturbation /7 ¢ e, J/

The latter determines the set of resonant frequencies or,

briefly, resonances :
2 (I)= (3)

It is well Xmown (see, for sxample 1 ) that each
separate resonance causes the so-called phase oscillations,

£

or the pulsation of the oscillator amplitude and frequency
around the resonant value MP « The maximug swing of this
pulsation determines the range of the resonance influence.

In frequency units the order of magnitude nr tois range 18 as

follows :
quﬁm.,/iac )

where =CJ/¢J)(‘{‘J/¢{I} is the dimensionless factor of

nonlinearity. The relation (4) is given in the first approxi-
mation with respect to /%7 , /E€x and is valid, therefore,
under moderate nonlinearity : P

i e
Esa e 5)

In the case of many resonancee the oscillator behavior
depends essentially on the quantity :

K =<%£) 4 (6)

where /A is the average interval between the neighbour
resonances.

For %(-r:f the range of resonance influence is relative-
1y small, so an oscillator is found either far from all the re-
sonances or under the influence of only one of them t¢md, hence,
it performs stable phase oscillations. But if ¥ >/, then
the influence ranges of the neighbour resonances overlap and
an oscillator gets the possibility to transit from one reso-
nance to the other, changing its frequency and energy. From
here the following hypothesis is naturally arising | :
the condition 1{ J

Ao bl e (7).

determines the stochasticity-line.

' This hypothesis proved to be quite fruitful and gave the
possibility to investigate some applied problems including :
particle motion in magnetic traps 1,4,5 s Permi stochastio
acceleration 6 » nonlinear waves 7 '

Bumeriocal integration of motion equations for some spe-
cific examples confirms that the condition (7) determimes a
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Towa pFsloal Line of motion stability. This 1ine is nob sharp.
wn T contriury, 1t forms an intermediatce zone penetrating
dseply hoth into the reglon of atability and into that of sto-
chasticity. {res can show that in the intermediate zone there
exigt, depending on the initial conditions, quite various types
of motion, inciuding even a monotone change of oscillator's
energT 2s Tor a linear resonance.

The atavbla region (/'E &« jy corresponds, at least asympto-
tically, to the region tror which everywhere dense sat of inva-
riant tori, with almost-periodic motion on vhem, exists as it
was discovered by Kolmogorov and Armold 8+9 Tt's possiblie
and even quite likely that for this region there exists, rover-
theless, a very slow mixing 10 » B0 slow that no one waz abls
Fill pow to find it out by numexical calculations. However,
this does not belittle the importance of the stochasticity-1line
(7) behind which a relatively fast mixing (ixn the first order
%ith Tespect to & ) takes plsca. I would like to emphasize
taat in the region of stochasticity the rixing is not merely
T2t but as Tast as possible for a given perturtation.

It ie important to mention that the quantity X, depends
ot xly on parsmeters of the system such as £ , but also on
coug dynamical varisble I . g . Hence, the stochasticity-

live pet only determines the oritical valus of perturbation,
it also sepsrates the phage space of the system end even, in
"caeral, the 2ach energy surface. Thie leazds to a very interss—

vy, gifvavion, qulte different from the classical statement

the proviem in the ergodic theory; the latter considsrs sto-

chagticily on the whole erergy surface of conservative syatem,
Feriloularly the problem arises sbovt the transition from the
statiotical description te the dynemical on2, ipside the ianter-
nediate zove (7). In the first spproxiwstion this transition
can be described as a boundary condition like 2 reflecting
wall Jor the distribubion function in the Tegion of stochasti-
city. yet such an apyroximation is gmite rough ° .

i wisk G0 comeider, 8s an =¢ample, the problem Permi-
Ay . & .
~Facva~Ulas  '® shout the statistical properties of nonlinear

» £ -

string with fired ends which is obeing the equation '’ :

2 0 G (jfjfg(?z)z/+!a?%

AL T D ZER ?Z 2z (8)
Here X 1s displacement; < - a co-ordinate along the string;
/9_, J stand tor coefficients of nonlinearity and dispersion,
respectively. The dispersion term is included in the equationm,
which is necessary for a correct formulation of the problem
that was cleared up by Zabusky 12 .,

It is known that Fermi, Pasta, Ulam did not rind any sta-
tistical properties of the motion as a result of their numeri-
cal integration of the equation (8). This has provoked a live-
ly discussion which is still going on now. From my point of
view such a rasult may be explained by the use of unlucky (or
rather lucky) initial conditions that were found in the region
of stability. An estimation of stechasticity-line position for
this problem was obtained in common with Israelev ’/ , it can

be given in the form
-7
J e
s

b 9
where 1> " i the density of oscillation energy per unit
length of the string, £ 1s the total energy, /» - quantity
of excited modes with the mean number 4 . The mode means
space Pourier transform of displacement, number of which i« =
=X L/)\,vwhere A and / are the length of wave and
string, respectively. -

The left-hand aside of ariterion is to the ave-
rage velue of the nonlinear term (< 38(2%5z)%). Hence, for
a weak nonlinearity(J3(P%/z)*«//, the stochastieity ia
possible only if high modes are excited. Their mean mumber is

*) I consider here only a simpler case with cubic nonlinearity
(term ~C°"/‘a})'} ; quadric nonlinearity (-~ OX/D2) shows a
similar picture.
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scamunicatied either with the initisl conditions (K ~ K, ) or
with thg formatlon of & shock wave (or more correctly, seli-
tone % J« In the last cese: the following estimation is va-

1id 18 :

iC —é— 33 10~

DTJ’ fj (10)
&t ¥~ @ the quamtity Kk is increasing infinitely and the
stochagtlclty criterion (9) is always realized.

Fumerical integration of the equation (8) was carrisd out
in common with Isrselev and Khigamutdinov in order to obbtain
“experimentally” the stochasticity-line positior. The local
motion instabllity ) proves to be a very convenient and sen-
sitive indication of stochasticity. We used the property of
space symmetry of the solution (8) nucdrding to which the even
wodes c‘annufaappear during the motion if they wer: not excited
initially & . Pub if they are given very little cnergy
{~ ;{;”!SE in our cese), them this energy will remain at sbout
the same level in the regior of stability, bubt in the region of
stochastlolty 1t will be growing exponemtially in time, achisv-
ing quickly the energy level of the main excited modes. An
sxample of such a behavier of the even modes i1s given in Fig 1,
whioh demonstrates the crossing of stochasticity-line.

Dependence of the rise time T for local instability
92 the perturbation parameter /6 (Fig 2) shows the existence
¢f 2 broad intermediabte zone which is extending fer into the
reglon of stebllity. It is interesting to note that gven in
Gho casge of exciving only the first mode (the mein initisl cop~
ditlons tor Fermi, Pasta, Ulam calculations ) there is a
vary weak stochasticlty as well. It is clearly seen from the

®) In my opinlen, 1%t is the most important property of sto-
chastic motlon which determines probably the very physical
nature of "real" stochasticity. The local imstability is
widely used in analytical study of stochasticity 14716

- -

I\

cvrve of the second mode energy increasing (upper ourve in
Fig 3), although the lowsr curve ( E; (ﬁ'j ) Beems to glve &
copvineing indication of the almost-pericdie character of the
motion.

For e:iuiﬂ.imtant set of resonances the theory leads to
the lincer velation between T/ and /3 (both quantities
are proportional to Xolmogorovw entropy):

f/z. = Q-Zm(ﬁ&tﬁj s

where /9., corvesponds to the stochasticity-line and tho
factor of proportionmslity L~ 8/7, For large /5 this law
is reaiized quite well (Fig 2) and it gives & possibility to
get the upper stochagticity-line poiant (by the extrapclation
to T'=0 ). The wpper line is the main stochasticity-line
which should be compared with the analytical estimations ! .
Furthermore one can distinguish, mors or less certainly, in
the intermediate zone in Fig 2, the other lineer plots which
apparently correspond to a more dense set ¢f resomances.

411 vhe critical perturbation values obtrined in such
& way are plotted in ¥Flg & end they agree in the order of mag-
nitude with analytical estimations Cighige Hemce, it cun be
concluded that we rightly understand the wain mechanics of sto-
chasticity for nomlinear waves of the type (8), thouwgh, of
eeurse, there remain wany interesting and unclear deteils in
thedr behsvior. The omly serious contradiction is commected
with a wondsyful stabiliiy of molitons discovered by Zabusky
snd Keoskel 7 " gnich seemed to exclude the stochasticity.
It's possible that this centradiction may be explalned via non-
-gguivalence of the urigiﬁ werre oguation (8) anfdl the first or-
der Eorbewsg - de Wrlss byps cquabion frow which sollitons were
deduced 17, 18 .
Acknowledgement -~ I wish to thexik D.7.duosov, V.I. Arneld,
H.D. ¥roskal, Ya.G. Sinaj and W.J0. Zabesyy for mumerous useful
alscussions.
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Fig.2 Dependence of the local inatability
growth ra:tm /%= on perburbation pa-
rmtnr . Igi%%l na?‘ﬂitim
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A vestige cf stoshastigity lﬂ. ths regicn
of stability: Ke=1: /A3 ;ﬁ 204, Tom urper
curve demonayvrates an ex"ﬁ unt.:.al growth
of the second mode energy (&b the average),
the lower one = a_‘i.mst-—paria&ic ogeilla-
tion of the firsv ncde energy.
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summary of resulbs. Analytical estimations for the
stuuhasticity—liné 7 o - for K<< AN 8 - for
« x N ; o,d - qualitative ipterpolation. The re-
aults of numerical calculations 12 , {32 Xw=
=1 Kg=1i P =8 Ko= 7, B = 1/16 (2).
The results of numerical determinaticn of the sto-
chasticity-line = upper ( ? ), lower ( 5 ),
intermediate ( © )¢ N =35 Xn=1: Ko = 1,3,5
(2250 Kg = 15, 17, 19 (B); Kg= 27 29, 31 (5).



