
Эксперимент КЕДР

В. Блинов

Институт Ядерной Физики им. Будкера СО РАН

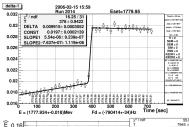
Энергия пучка: $1 \div 5$ ГэВ

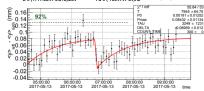
Число банчей: 2×2

Светимость: $(1 \div 80) \times 10^{30} \text{ см}^{-2} \text{c}^{-1}$

Измерение энергии

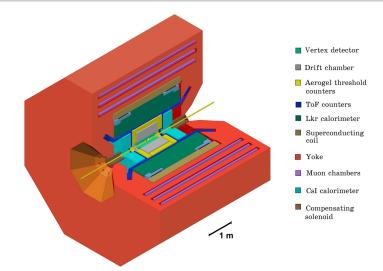
Метод обратного комптоновского рассеяния


• E<3 ΓэВ: $\triangle E/E = 3 \times 10^{-5}$, 100 кэВ


Метод резонансной деполяризации с измерением частоты деполяризации

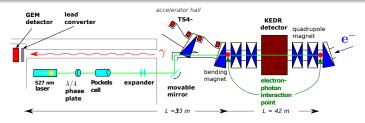
• E<3 ГэВ: внутрисгустковое рассеяние $\triangle E/E = (5 \div 15) \times 10^{-6}, \ (10 \div 30)$ кэВ За время эксперимента проведено 3089 калибровок энергии

• E>3 ГэВ: ассиметрия рассеяния циркулярно поляризованных лазерных фотонов $\triangle E/E=10^{-5},~(30\div50)$ кэВ



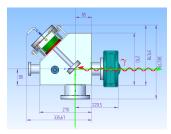
Физические задачи

- Измерение масс элементарных частиц
 - Низкая энергия: J/ψ , $\psi(2S)$, $\psi(3770)$, D^0 , D^{\pm} -мезоны, au-лептон
 - Высокая энергия: $\Upsilon(1s)$, $\Upsilon(2s)$, $\Upsilon(3s)$, $\Upsilon(4s)$ мезоны
- Измерения лептонных ширин ψ и Υ мезонов
- Измерение R в области $2E = 2 \div 10$ ГэВ
- Измерение сечения $\gamma\gamma \to hadrons$ и другие 2γ -процессы
- Ряд других процессов

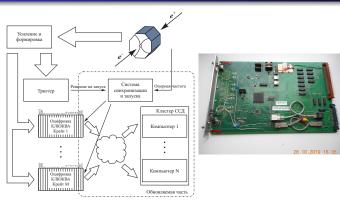


• Все системы детектора находятся в адекватном для выполнения физической программы состоянии

Работы по детектору

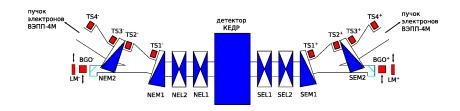

- Модернизация инженерных систем детектора
- Лазерный поляриметр
- Модернизация системы сбора данных детектора
- Система регистрации рассеянных электронов (позитронов)
- Новая дрейфовая камера
- Модернизация системы высковольтного питания (переход на CAEN)

Лазерный поляриметр


• Скорость счета увеличена в 5 раз

- Сконструирован новый узел ввода лазерного излучения с охлаждаемым водой медным зеркалом
 - \Rightarrow повышение скорости счета $\simeq 10$ раз !

- Новая система запуска лазера и управления поляризацией на основе VME (CAEN)
- ullet Новый GEM детектор (1120 каналов) + (2 к Γ ц o 4 к Γ ц)


Модернизация системы сбора данных

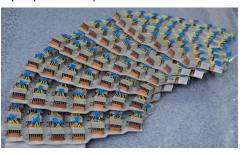
- Разработаны все необходимые блоки электроники
- Развернут стенд тестирования
- Разработаны алгоритмы и структура данных для маршрутизации, поступающих с электроники ССД информации по компьютерам вычислительного кластера для их обработки
- Ведется разработка ПО ССД

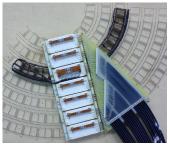
Система регистрации рассеянных электронов (позитронов)

- Система работает в составе детектора
- Статистику, набранную в 2018–2019 годах для измерения R, не предполагается использовать для $\gamma\gamma$ -физики. Для поддержания СРРЭ в работоспособном состоянии записывается каждое второе событие, проходящее триггер с РЭ
- Проведен профилактический ремонт/настройка всех 120 блоков камерной электроники.
- Продолжается разработка новых измерительных плат для повышения эффективности сбора данных СРРЭ

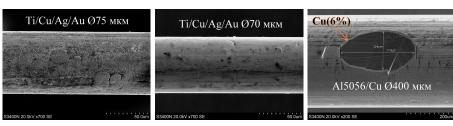
🚶 Новая дрейфовая камера

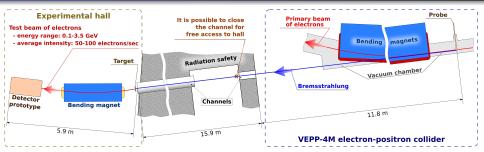
• Корпус ДК собран, преднатяжение создано, торцевые фланцы вклеены. Камера готова к натяжению проволочек.


• Пины, инструмент для фиксации проволочек в пинах изготовлены.



Новая дрейфовая камера

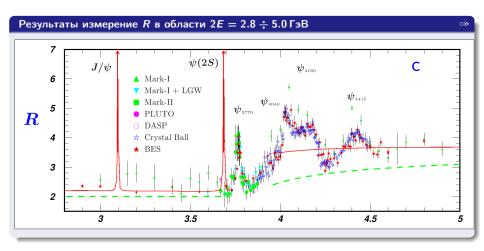

 Сектора предусилителей, ВВ питания (делители, кабельная трасса) изготовлены и проверены. Платы оцифровывающей электроники 50 шт. изготовлены, из них 17 шт. проверены и настроены.



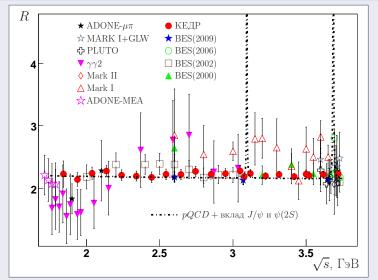
- Отработана технология натяжения проволоки на модели ячейки.
- Сигнальный кабель: конструкция кабеля согласована по спецзаказу на ОАО
 "Подольск-кабель". Планируется возобновление заявки на изготовление и поставку.

- Началу процесса натяжения проволочек мешает отсутствие экранной проволоки. Всего в ДК около 16 тыс. проволочек, из них 2.5 тыс. экранные. Требуемое количество проволоки: не менее 4100 метров. Диаметр 70 мкм. Материал: основа титан, покрытие 1 мкм медь, покрытие 0.7 мкм золото.
- Ведётся отработка технологии изготовления проволоки на АО "Денисовский завод" (Владимирская область).

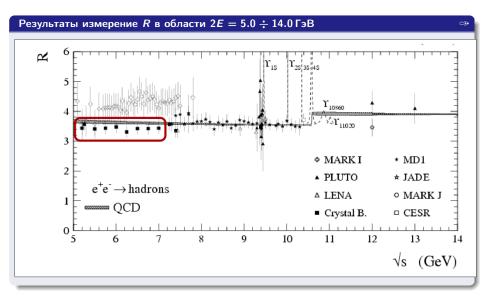
Тестовый пучок электронов


В 2019 году проведено 8 смен:

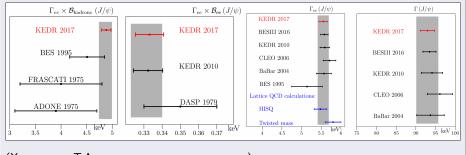
- технические смены выставка линии пучка
- набор данных с прототипом ФАРИЧ-3 - проверка считывания SiPM с новой электроникой, тестирование образцов аэрогеля с цирконием
- эксперименты с кристаллами LYSO измерение временного разрешения и черенковской компоненты в излучении


Планы на 2020

- переход на новую электронику САЕN (высоковольтное питание, система сбора данных)
- собрать и запустить в эксплуатацию детекторы на основе ГЭУ для координатной системы пучка
- автоматизация установки величины магнитного поля в поворотном магните


$$ullet$$
 II сканирование области 2 $E=4.5\div7.0$ ГэВ: $LT=4.8\,\mathrm{n}6^{-1}$

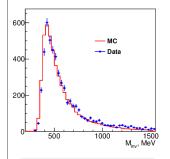
(Тодышев К.Ю., докторская диссертация)


Параметры J/Ψ – мезона

 $\Gamma_{ee} = (5.550 \pm 0.056 \pm 0.080)$ кэВ

$$\Gamma_{\rm ee} imes B_h = (4.884 \pm 0.048 \pm 0.078)$$
 кэВ

$$\Gamma_{ee} imes B_{ee} = (0.3331 \pm 0.0066 \pm 0.0004)$$
 кэВ


$$\Gamma = (92.94 \pm 1.83)$$
 кэВ, $(\Gamma_{ee} = (5.55 \pm 0.14 \pm 0.02)$ кэВ, PDG 2016)

(Харламова Т.А., кандидатская диссертация)

C⊕

$$\mathrm{e^+e^-}
ightarrow \mathrm{e^+e^-} + \mu^+\mu^-$$

 $E_b pprox 1.8$ ГэВ, pprox 6 пб $^{-1}$

Data: $5046 \pm 72 \pm 35$, Data/MC = 1.009 ± 0.030

- ullet Продолжается обработка ee
 ightarrow ee + LL на статистике pprox 6 пб $^{-1}$. Проверена эффективность идентификации мягких электронов на событиях $ee
 ightarrow ee \gamma$. Обнаружена разница в данных моделирования и эксперимента, объясняющая противоречие в наблюдаемых сечениях ee
 ightarrow ee + ee и $ee
 ightarrow ee + \mu\mu$. Ведется работа по улучшению моделирования.
- ullet Для уточнения радиационных поправок в конечном состоянии к процессу ee
 ightarrow ee+ee запрошена помощь теоретиков (Роман Герасимов).

- Завершение сканирования области $2E = 4.5 \div 7.0 \; \Gamma_9 B$, $\int L dt = 1.5 \text{ п}6^{-1}$. Измерение R.
- Набор статистики при

$$2E = 9.46 \; \Gamma \ni B, \quad \Upsilon(1S)$$
 $2E = 10.02 \; \Gamma \ni B, \quad \Upsilon(2S)$ $2E = 10.36 \; \Gamma \ni B, \quad \Upsilon(3S)$ $\begin{cases} \int L dt = 10 \div 30 \; \text{n}6^{-1} \end{cases}$

- ullet Набор при $2E=8.0\div 10^*$ ГэВ, $\int Ldt=200$ пб $^{-1}$. Двухфотонная физика.
 - * Повышение энергии до 5 ГэВ в пучке позволит обогатить физическую программу измерением масс и лептонных ширин семейства Υ мезонов при наборе интеграла светимости для двухфотонной физики.

K

- ullet Завершено выполнение физической программы при 2E < 7 ГэВ
- Начат набор статистики при 2E > 7 ГэВ
- Для выполнения физической программы на этой энергии требуется кратно повысить надежность работы комплекса ВЭПП–4М и набрать $\int L dt \simeq 200-250~{\rm n}{\rm f}^{-1}$.

Команда установки детектор "КЕДР" - январь 2014 (фото А.А. Осипова) Спасибо за внимание