КМД-3 (Криогенный Магнитный Детектор)

Логашенко И.Б. Научная сессия ИЯФ, 2 марта 2023

F.V. Ignatov^{a,b,1}, R.R. Akhmetshin^{a,b}, A.N. Amirkhanov^{a,b}, A.V. Anisenkov^{a,b}, V.M. Aulchenko^{a,b}, N.S. Bashtovoy^a, D.E. Berkaev^{a,b}, A.E. Bondar^{a,b}, A.V. Bragin^a, S.I. Eidelman a,b, D.A. Epifanov^{a,b}, L.B. Epshteyn^{a,b,c}, A.L. Erofeev^{a,b}, G.V. Fedotovich^{a,b} A.O. Gorkovenko^{a,c}, F.J. Grancagnolo^e, A.A. Grebenuk^{a,b}, S.S. Gribanov^{a,b}, D.N. Grigoriev^{a,b,c}, V.L. Ivanov^{a,b}, S.V. Karpov^a, A.S. Kasaev^a, V.F. Kazanin^{a,b}, B.I. Khazin a, A.N. Kirpotin^a, I.A. Koop^{a,b}, A.A. Korobov^{a,b}, A.N. Kozyrev^{a,c}, E.A. Kozyrev^{a,b}, P.P. Krokovny^{a,b}, A.E. Kuzmenko^a, A.S. Kuzmin^{a,b}, I.B. Logashenko^{a,b}, P.A. Lukin^{a,b}, A.P. Lysenko^a, K.Yu. Mikhailov^{a,b}, I.V. Obraztsov^{a,b}, V.S. Okhapkin^a, A.V. Otboev^a, E.A. Perevedentsev^{a,b}, Yu.N. Pestov^a, A.S. Popov^{a,b}, G.P. Razuvaev a,b, Yu.A. Rogovsky^{a,b}, A.A. Ruban^a, N.M. Ryskulov a, A.E. Ryzhenenkov^{a,b}, A.V. Semenov^{a,b}, A.I. Senchenko^a, P.Yu. Shatunov^a, Yu.M. Shatunov^a, V.E. Shebalin^{a,b}, D.N. Shemyakin^{a,b}, B.A. Shwartz^{a,b}, D.B. Shwartz^{a,b}, A.L. Sibidanov^{a,d}, E.P. Solodov^{a,b}, A.A. Talyshev^{a,b}, M.V. Timoshenko^a, V.M. Titov^a, S.S. Tolmachev^{a,b}, A.I. Vorobiov^a, I.M. Zemlyansky^a, D.S. Zhadan^a, Yu.M. Zharinov^a, A.S. Zubakin^a, Yu.V. Yudin^{a,b}

Коллектив ~50 человек

Лаборатории 2, 3-3, 3-13,...

Физическая программа ВЭПП-2000

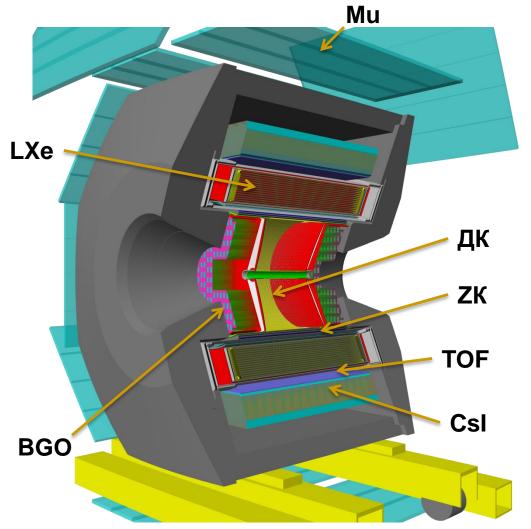
- Измерение сечений рождения во всем диапазоне энергий
- Изучение динамики (промежуточных состояний)

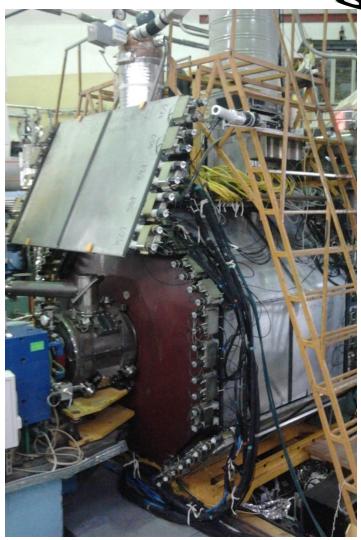
Изучение рождения адронов в аннигиляции e^+e^-

• Измерение параметров резонансов

 Адронный вклад в g-2 мюона

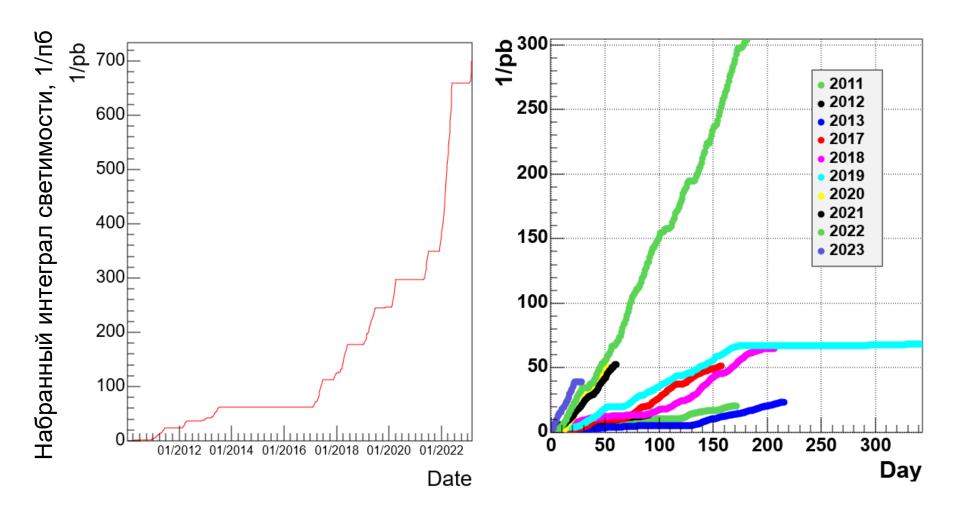
ВЭПП-2000

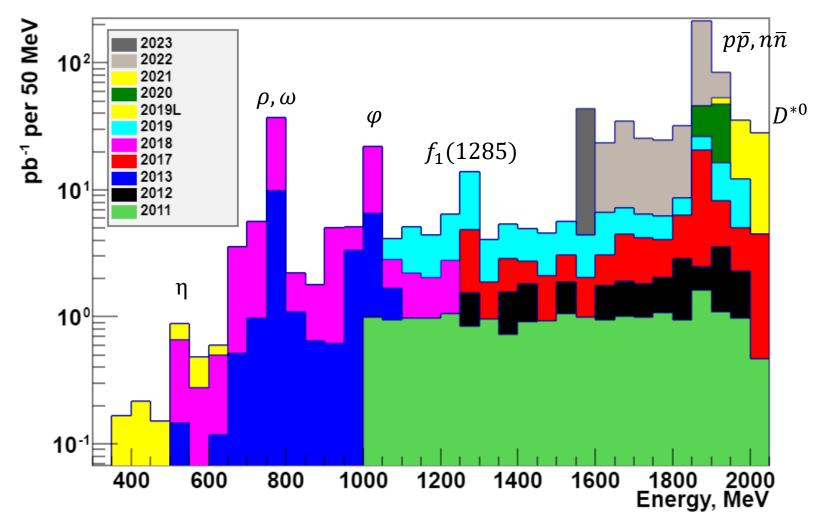

- Электромагнитные формфакторы нуклонов
- Поведение адронных сечений на пороге

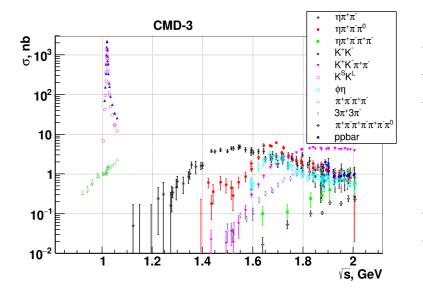

Изучение рождения адронов вблизи порога $N \overline{N}$

Отдельные задачи

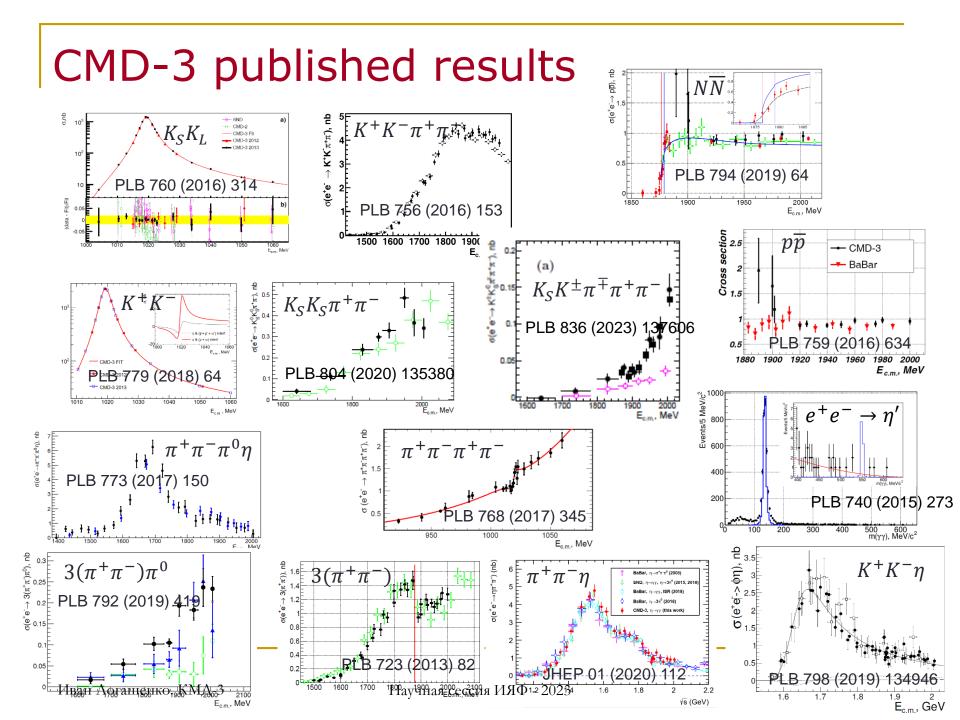
$$e^+e^-
ightarrow\eta^\prime \ e^+e^-
ightarrow\pi^0e^+e^- \ e^+e^-
ightarrow D^{0*}$$


Детектор КМД-3


История набора статистики


История набора статистики

Анализ данных

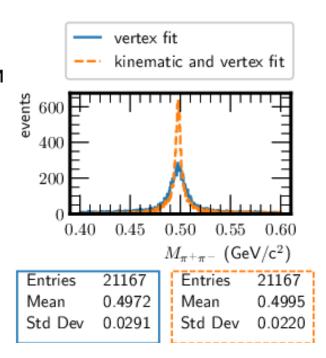


Signature	Final states (preliminary, published)
2 charged	$\pi^+\pi^-$, K^+K^- , K_SK_L , $p\overline{p}$
$2 ext{ charged} + \gamma$'s	$\pi^{+}\pi^{-}\gamma$, $\pi^{+}\pi^{-}\pi^{0}$, $\pi^{+}\pi^{-}2\pi^{0}$, $\pi^{+}\pi^{-}3\pi^{0}$,
	$\pi^{+}\pi^{-}4\pi^{0}$, $\pi^{+}\pi^{-}\eta$, $\pi^{+}\pi^{-}\pi^{0}\eta$,
	$\pi^{+}\pi^{-}2\pi^{0}\eta$, $K^{+}K^{-}\pi^{0}$, $K^{+}K^{-}2\pi^{0}$,
	$K^+K^-η$, $K_SK_Lπ^0$, $K_SK_Lη$
4 charged	$2(\pi^{+}\pi^{-}), K^{+}K^{-}\pi^{+}\pi^{-}, K_{S}K^{\pm}\pi^{\mp}$
4 charged $+ \gamma$'s	$2(\pi^+\pi^-)\pi^0$, $2\pi^+2\pi^-2\pi^0$, $\pi^+\pi^-\eta$,
	$\pi^+\pi^-\omega$, $2\pi^+2\pi^-\eta$, $K^+K^-\omega$,
	$K_SK^\pm\pi^\mp\pi^0$
6 charged	$3(\pi^{+}\pi^{-}), K_{S}K_{S}\pi^{+}\pi^{-}$
6 charged $+ \gamma$'s	$3(\pi^+\pi^-)\pi^0$
Neutral	$\pi^{0}\gamma$, $2\pi^{0}\gamma$, $3\pi^{0}\gamma$, $\eta\gamma$, $\pi^{0}\eta\gamma$, $2\pi^{0}\eta\gamma$
Other	$n\pi$, $\pi^0 e^+ e^-$, $\eta e^+ e^-$
Rare decays	η', D*(2007) ⁰

Ведется независимый анализ данных для каждого конечного состояния (десятки)

Скорость получения результатов определяется количеством людей, занимающихся анализом

Пакет кинематической реконструкции arXiv:22


arXiv:2208.11569 -> JINST

Предназначение пакета:

- 1. для анализа данных с детектором КМД-3;
- 2. прототип пакета кинематической реконструкции для Super-Charm-Tau фабрики.

Особенности и возможности пакета:

- 1. кинематическое и вершинное фитирование;
- 2. параметризации четырех-импульсов и траекторий для различных типов частиц, например, заряженных частиц, фотонов, промежуточных и потерянных частиц;
- 3. наличие условий выполнения законов сохранения энергии-импульса, вершинных условий и условий на инвариантную массу.

$$e^+e^- \rightarrow K_S K \pi$$

$e^{+}e^{-} \to K_{S}K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$

1. e⁺e⁻→K⁺K⁻
$$\pi$$
⁺ π ⁻ π ⁰

- the only measured XS - BaBar Phys.Rev. D76 (2007) 092005

2.
$$e^+e^- \rightarrow K^+K^-\pi^0\pi^0\pi^0$$

No info . Partly from φη

3.
$$e^+e^-\rightarrow K_SK_L\pi^0\pi^0\pi^0$$

 $e^+e^-\rightarrow K_SK_L\pi^+\pi^-\pi^0$

- No info . Partly from φη

4.
$$e^+e^- \rightarrow K^{+-}K_{s,L}\pi^{-+}\pi^0\pi^0$$

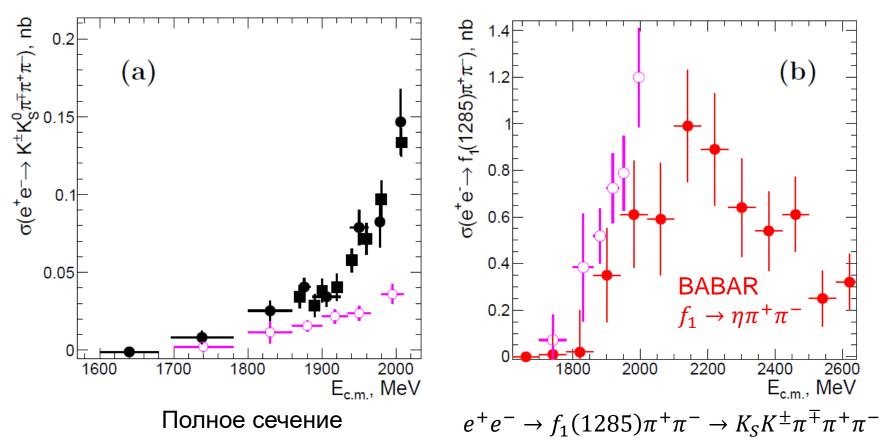
- No info-similar to $\pi^+\pi^-\pi^+\pi^-\pi^0\pi^0$

5.
$$e^+e^-\rightarrow K_sK_s\pi^+\pi^-\pi^0$$

 $e^+e^-\rightarrow K_LK_L\pi^+\pi^-\pi^0$

- No info-similar to $K_SK_S\pi^+\pi^-$

6.
$$e^+e^-\rightarrow K^{+-}K_{s,L}\pi^{-+}\pi^+\pi^-$$

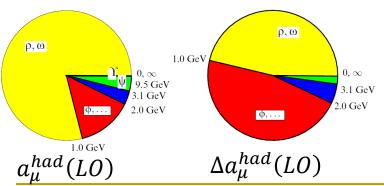

6. $e^+e^- \rightarrow K^{+-}K_{s,L}\pi^{-+}\pi^{+}\pi^{--}$ - No info – 6 tracks, good for CMD-3

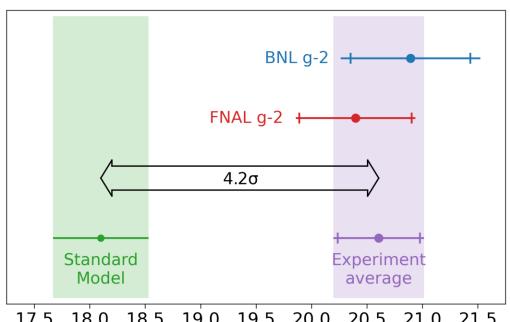
$e^+e^- \rightarrow K_SK^{\pm}\pi^{\mp}\pi^+\pi^-$

PLB 836 (2023) 137606

185 1/pb, 2011-2021 data

Систематическая ошибка ~15%


Аномальный магнитный момент мюона



$$a_{\mu} = a_{\mu}^{QED} + a_{\mu}^{Had} + a_{\mu}^{Weak}$$

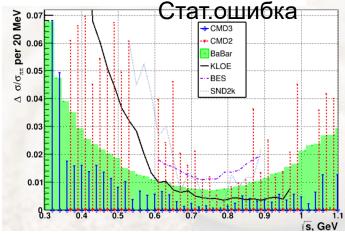
$$a_{\mu}^{had}(LO) = \frac{\alpha^2}{3\pi^2} \int_{4m_{\pi}^2}^{\infty} \frac{ds}{s} R(s) K_{\mu}(s)$$

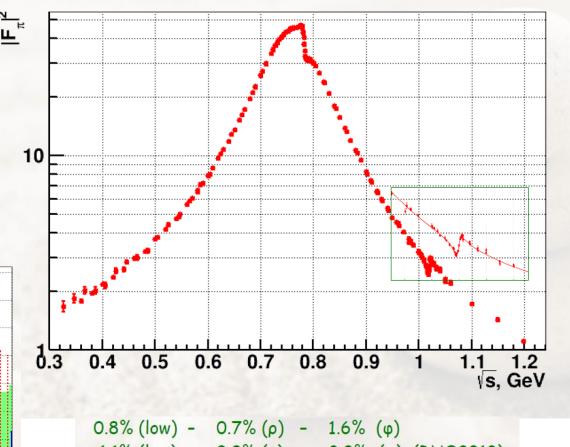
$$R(s) = \frac{\sigma^{0}(e^{+}e^{-} \rightarrow \gamma \rightarrow hadrons)}{4\pi\alpha^{2}/3s}$$

17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 $a_{\mu} \cdot 10^{9} - 1165900$

Основной вклад вносит $e^+e^- \to \pi^+\pi^-$ (>70%), 80% из которого набирается в области 0.6-1.0 ГэВ

arXiv:2302.08834

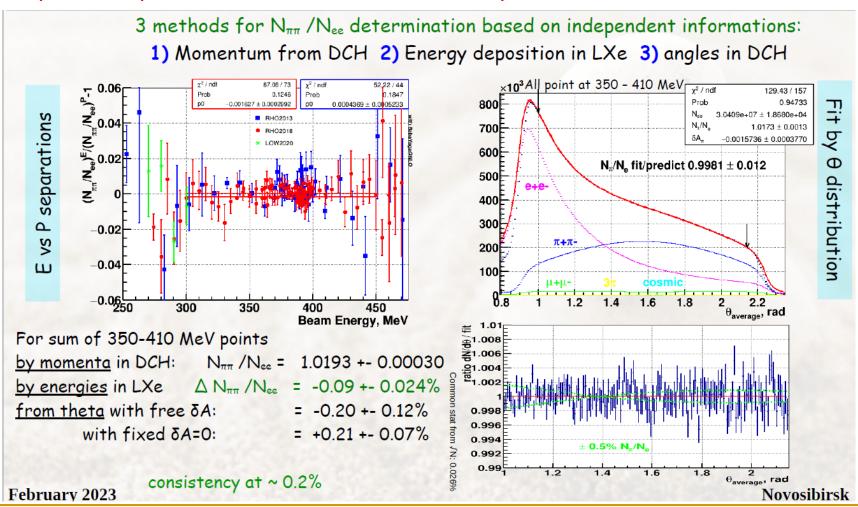

Данные 2013, 2018, 2020


0.32-1.2 GeV

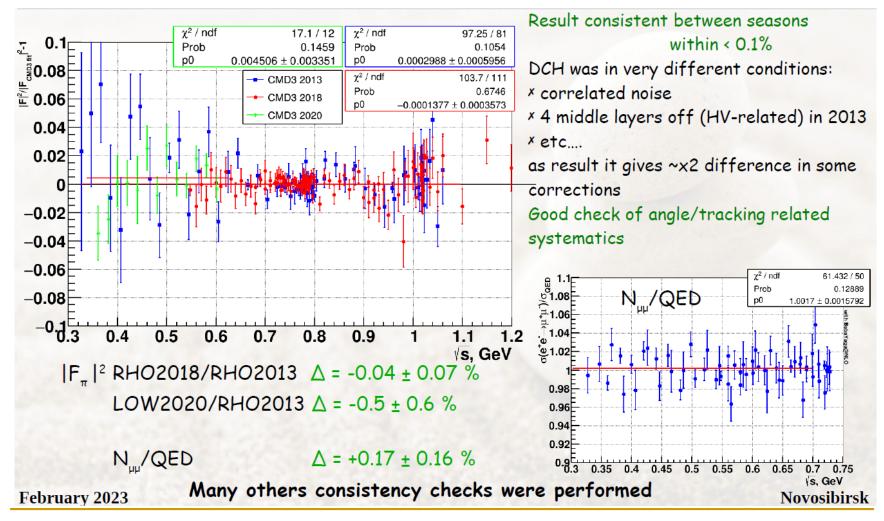
62 1/pb ниже 1 GeV 25 1/pb выше 1 GeV

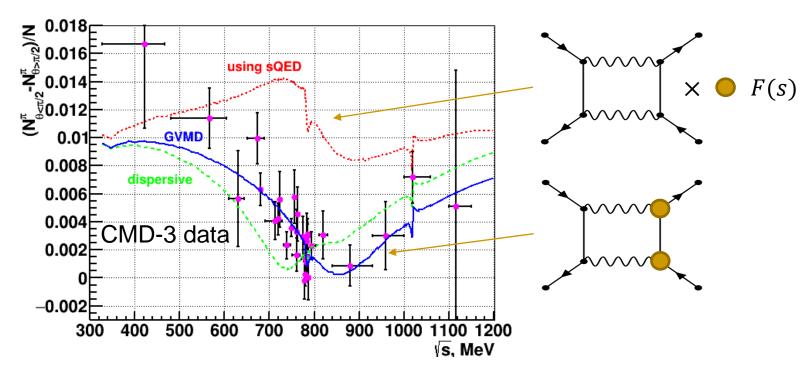
 $34 \times 10^6 \,\pi^+\pi^ 44 \times 10^6 \,e^+e^-$

 $3.7 \times 10^6 \,\mu^+\mu^-$


0.8% (low) - 0.7% (ρ) - 1.6% (φ) 1.1% (low) - 0.9% (ρ) - 2.0% (φ) (RHO2013) Систематическая ошибка

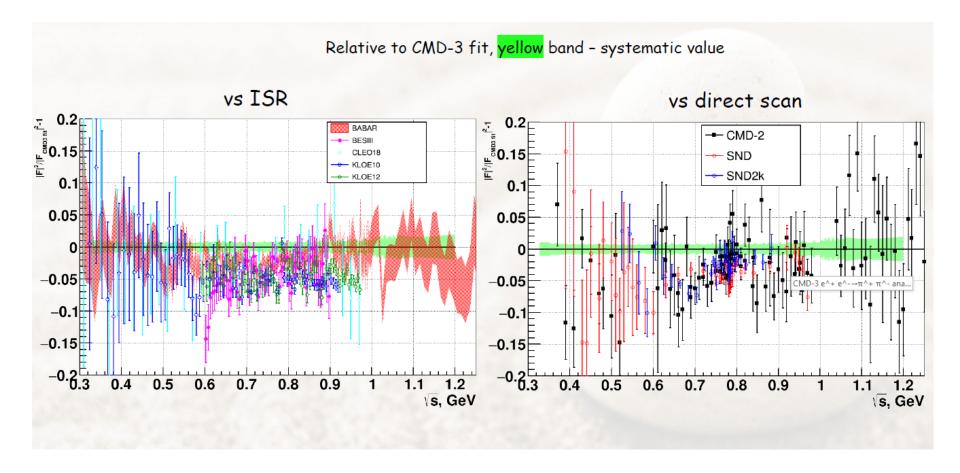
arXiv:2302.08834


Впервые! – три независимых метода идентификации частиц в одном анализе

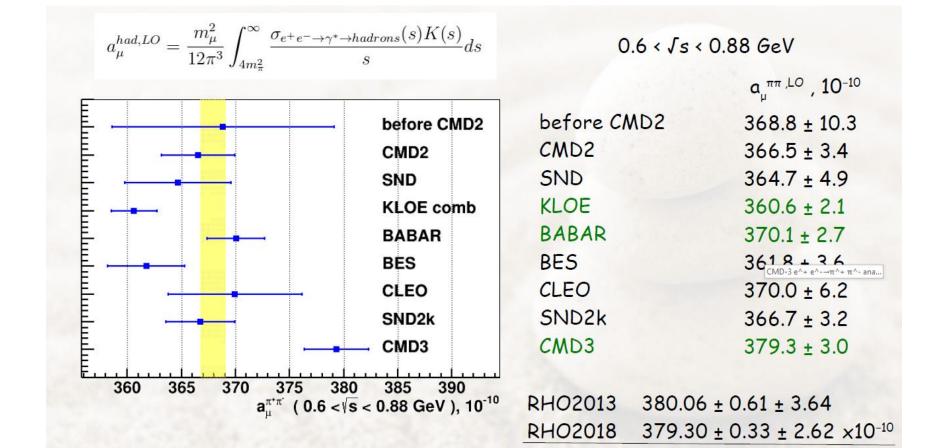

Сравнение сезонов, $\sigma(e^+e^- \rightarrow \mu^+\mu^-)$

$e^{+}e^{-} \to \pi^{+}\pi^{-}$: зарядовая асимметрия

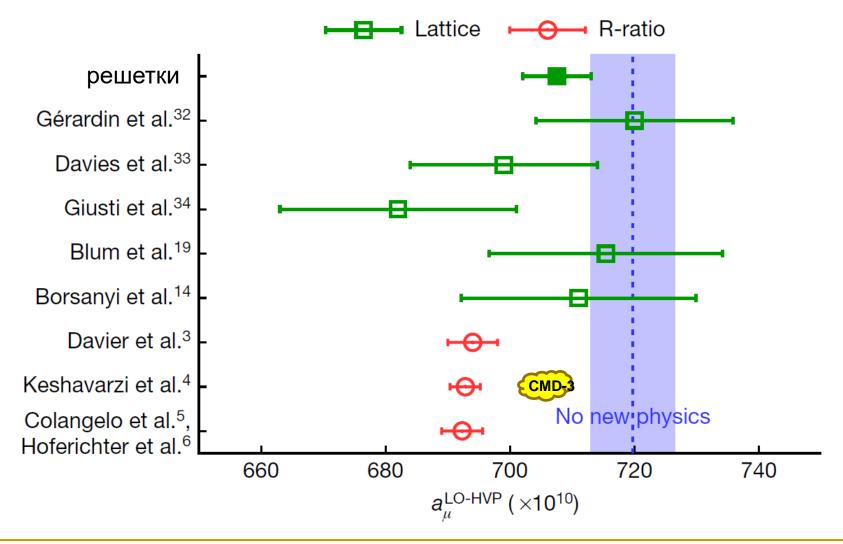
Charge asymmetry in $e^+e^- \rightarrow \pi^+\pi^-$ is due to interference between ISR/FSR and between one- and two-photon exchange


$$A = \left(N_{\Theta < \pi/2}^{\pi} - N_{\Theta > \pi/2}^{\pi}\right)/N$$

The theoretical model by Lee, Ignatov, **PLB 833 (2022) 137283** (GVDM) describes well the CMD-3 data


$e^+e^- \rightarrow \pi^+\pi^-$: сравнение

$e^+e^- o \pi^+\pi^-$: вклад в $a_{\mu}^{had}(LO)$

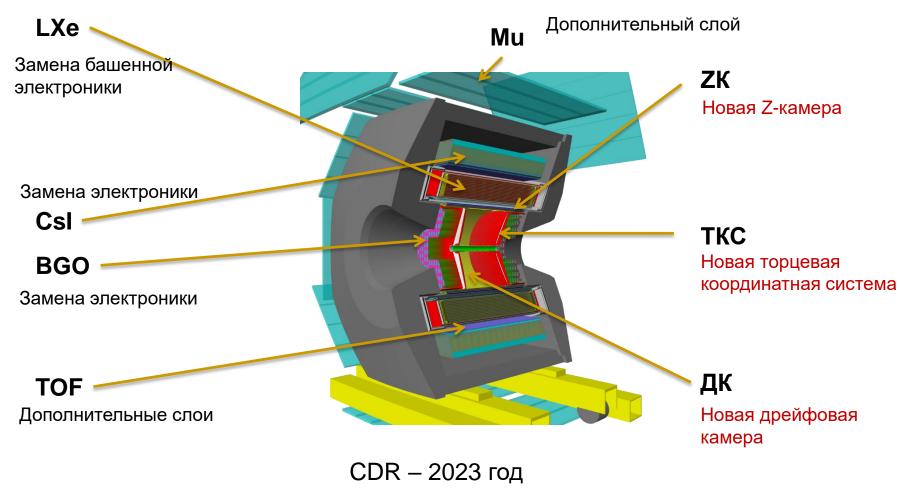


Sum

 $379.35 \pm 0.30 \pm 2.95$

$e^+e^- o \pi^+\pi^-$: вклад в $a_{\mu}^{had}(LO)$

Предположительные долгосрочные планы



- Набор данных
 - □ Завершить сканирование выше 1 ГэВ 2023
 - □ Ниже 1 ГэВ, ρ , ω 2024
 - Добрать недобранное (самые низкие энергии, или С-четные резонансы, или GE/GM,...) до лета 2025
- Останавливаемся летом 2025 (2026?)
- Начинаем сборку летом 2027
- Начинаем набор данных в начале 2028 года
 - Приоритетная задача: формфактор пиона с точностью <0.25% в области rho (и много другого)
 - □ Характеристики ВЭПП-2000 такие же (светимость не возрастет)

4-5 лет на подготовку

Долгосрочные планы модернизации детектора

