
Инжекционный Комплекс

Д. Беркаев от имени команды ВЭПП-5

Этапы пути...

1990г – начало строительства

1996г – ускорены первые электроны на установке «Стенд»

2002г — запущен линейный ускоритель электронов (270МэВ) и конверсионная система

2007г — захват и накопление электронов в накопителеохладителе

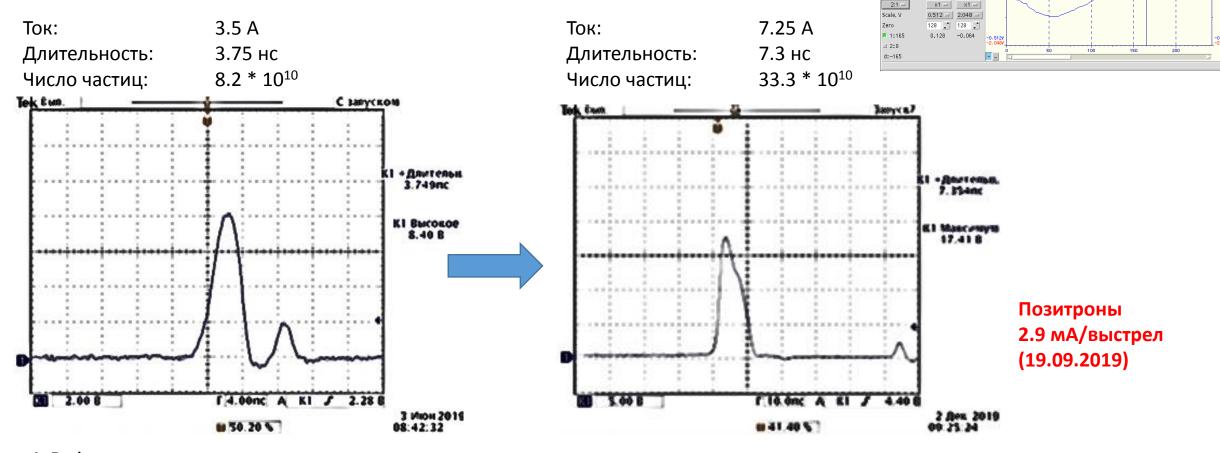
2013г — захват и накопление позитронов в накопителеохладителе

27.01.2016 — пучок электронов в БЭП **23.06.2016** — пучок позитронов в БЭП

19.10.2016 — пучок электронов в ВЭПП-3 **28.12.2016** — пучок позитронов в ВЭПП-3

2017 – Регулярная работа на оба коллайдера

2018 – Автоматический режим для ВЭПП-2000


2019 - Новый катодный узел «10 А»

Главный результат 2019

Новый катодный узел «10 А»

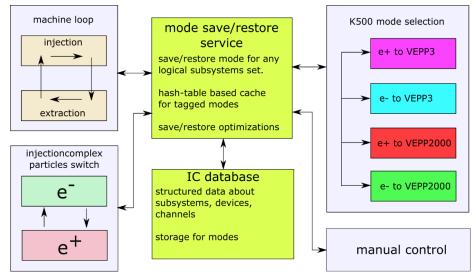
Позитроны

1.5 мА/выстрел (15.11.2018)

А.Р. Фролов

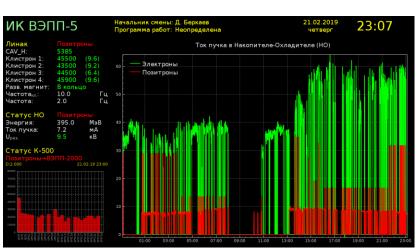
Позитронный соленоид

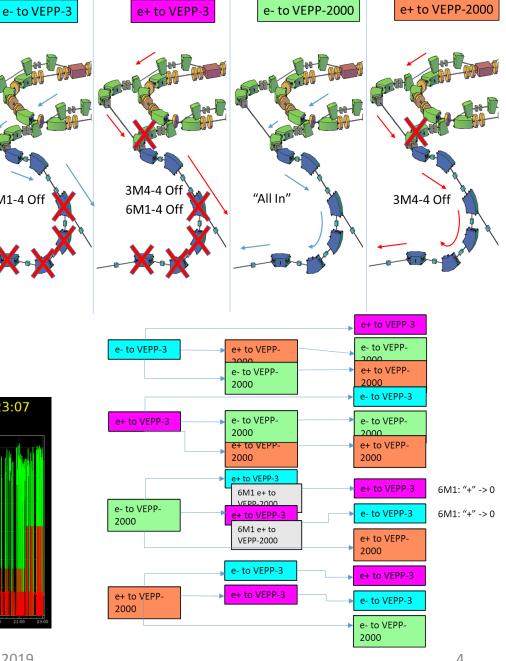
12.10.2019 (суббота) — просадка электроэнергии с отключением дистиллята (возможно с бросками давления) Закорочена 3-я внешняя секция позитронного соленоида...


Темп накопления позитронов падает до 0.2-0.3 мА/выстрел.

Внешние секции отключены полностью. Темп накопления позитронов 1.1 – 1.3 мА/выстрел.

Вернулись к стабильному 2018...


Замена соленоида возможна только с разбором всей конверсионной системы и первой ускоряющей секции.


Совершенствование управления режимами работы

4 режима 12 переходов Циклы инжекции-выпуска Синхронизация с ВЭПП-2000 и ВЭПП-4М

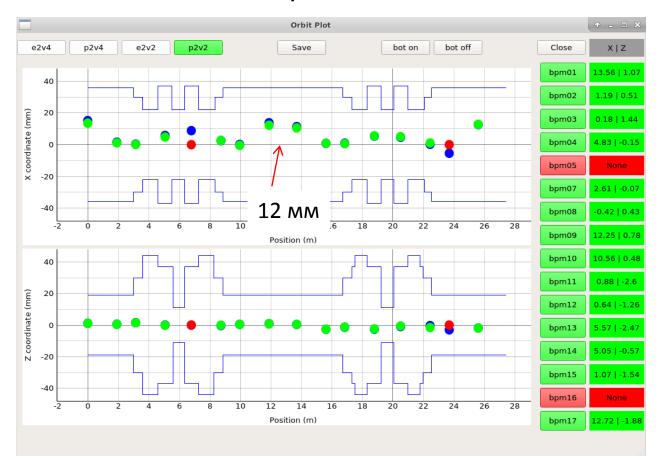
Ф.А. Еманов

6M1-4 Off

Новые источники ВЧ-500 и ВЧ1-1000

Заменено:

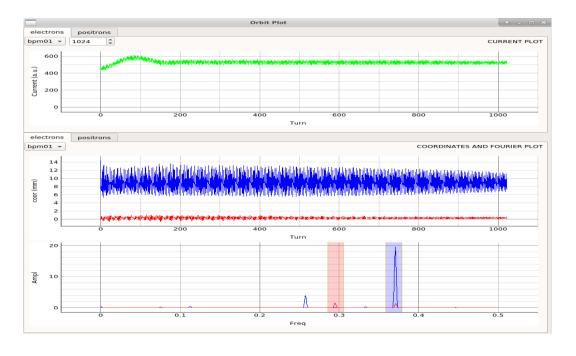
9 источников В-300 на ВЧ-500.

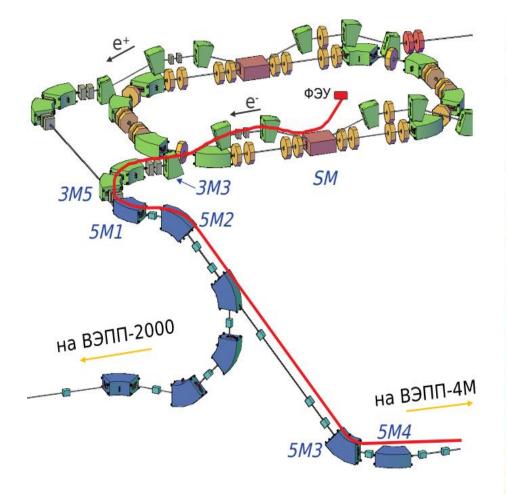

8 источников В-1000 на ВЧ-1000.

Параметр источника	ВЧ-500	ВЧ-1000	ВЧ-1300
Номинальная выходная мощность	10 кВт	15 кВт	15.6 кВт
Номинальный выходной ток	500 A	1 кА	1.3 кА
Номинальное выходное напряжение	20 B	15 B	12 B
Нестабильность тока	0.02%	0.01%	0.01%
(за 8 часов непрерывной работы)			
Пульсации выходного напряжения	Не более	Не более	Не более
	10 MB	10 MB	10 MB

Беликов и Ко.

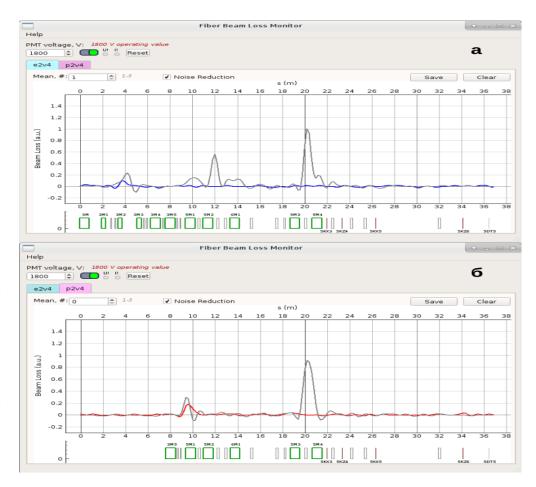
Осталось еще около 30...


Пикап-станции накопителя-охладителя


+ Матрицы отклика и автокоррекция орбиты (2020)

К.В. Астрелина, В.В. Балакин...

Параметр	Величина		
Диапазон измеряемых токов пучка	0.5 – 200 mA		
Температурная зависимость измерений	Менее 2 мкм/°С		
Разрешение пооборотных измерений			
При токах пучка 20-100 мА	Лучше 4-5 мкм		
При токе пучка 5 мА	~ 20 mkm		
При токе пучка 1 мА	~ 100 mkm		
Разрешение при времени измерения 100 мс			
При токах пучка 20-200 мА	Менее 15 мкм		
При токах 1 – 200 мА	Менее 50 мкм		
Емкость буфера для измерений	128 тысяч оборотов		
Регулировка усиления каналов	28 дБ		

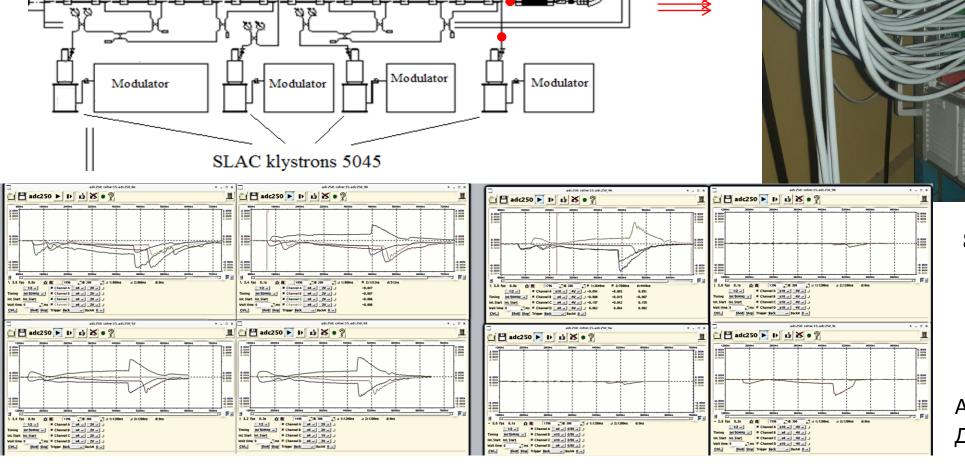


Датчик потерь в канале К-500

Кварцевое многомодовое оптоволокно марки «Thorlabs» (FG550UEC) длиной 50 м АЦП с полосой пропускания не менее 200 МГц и частотой дискретизации не менее 500 Мвыб/с

Ю.И. Мальцева

Измерение параметров системы СВЧ


Electron linac, 300 MeV

Positron linac, 500 MeV

Sub-harmonic

buncher

Electron gun

Conversion system

8*4 каналов 250 МГц АЦП

А. Павленко, А.М. Батраков Д.Ю. Болховитянов...

2019 и планы в 2020

2019

Замена 10-15 устаревших ВЧ-300 на современные

Замена пушки 5 А -> 10 А

Создание и установка новых генераторов инфлекторов НО

Автоматизация: переключение режимов, совершенствование программного обеспечения, полноценный обмен данными с СУ ВЭПП-2000 и ВЭПП-4М

Настройка орбиты и оптики накопителя-охладителя — увеличение темпа накопления позитронов

Повышение энергии 395 -> 420 МэВ

Заменено 17 источников, 2 в запасе

Новый катодный узел в работе

Прототип нового генератора установлен и подготовлен к испытаниям

Автоматика работает на новой версии ПО, взаимодействие с ВЭПП-2000 автоматизировано, ВЭПП-4М — в стадии окончания

Подготовлен разнообразный софт для работы с пикапами – тесты в 2020

Не выполнено

2020

Повышение надежности, стабильности и эффективности работы

- Замена устаревших ВЧ-300
- Новые генераторы кикеров
- Оптимизация и контроль оптики и орбиты кольца НО в рутинном режиме
- Полная автоматика
- Настройка линака в условиях неидеальной конверсионной системы (позитронный соленоид)
- Настройка и согласование каналов К-500

		Current, mA					
	١	/EPP-5 DR	BEP	VEPP-2000	VEPP-3	VEPP-4	
N \ Π,	,m	27,40	22,35	24,18	74,39	366,1	
1*1	LO ⁹	1,75	2,15	1,99	0,65	0,13	
5*1	LO ⁹	8,76	10,74	9,93	3,23	0,66	
1*10	010	17,52	21,48	19,85	6,45	1,31	
5*10	010	87,59	107,38	99,26	32,26	6,56	
1*10	011	175,18	214,77	198,51	64,52	13,11	

Цель: 50 мА/с @ 10 Гц (3*10¹⁰ e+/с)

Спасибо!

MA/c