
Сибирский Кольцевой Источник Фотонов (СКИФ)

Источник СИ в Новосибирске

- Удобное географическое положение
- Уникальное научное окружение, большой междисциплинарный научный центр
- Широкопрофильное университетское окружение
- Развитая пользовательское сообщество в ЦКП «Сибирский центр синхротронного и терагерцового излучения»

Потенциальные и реальные пользователи ИСИ

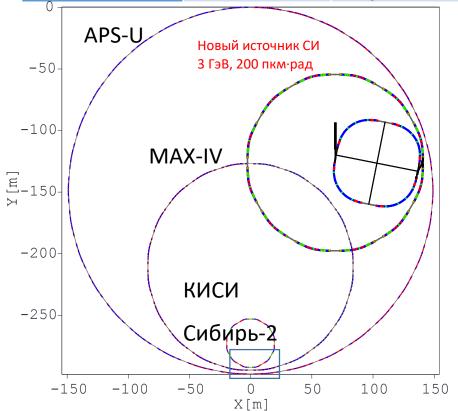
- Институты и научные организации Сибирского региона
 ГИН СО РАН, ИВЭП СО РАН, ИГАБМ СО РАН, ИГМ СО РАН, ИГХ СО РАН,
 ИГД СО РАН, ИЗК СО РАН, ИМКЭС СО РАН, ИНГГ СО РАН, ИПРЭК СО РАН,
 ИПНГ СО РАН, ИУ ФИЦ УУХ СО РАН, ЛИН СО РАН, ФИЦ УУХ СО РАН,
 ИПНГ СО РАН, ИУ ФИЦ УУХ СО РАН, ЛИН СО РАН, ФИЦ УУХ СО РАН,
 МТЦ СО РАН, ИК СО РАН, ИНХ СО РАН, ИППУ СО РАН, ИУХМ ФИЦ УУХ СО
 РАН, ИХН СО РАН, ИХТТМ СО РАН, ИХКГ СО РАН, НИОХ СО РАН, ИАИЭ СО
 РАН, ИОА СО РАН, ИСЭ СО РАН, ИФ СО РАН, ИФП СО РАН, ИФМ СО РАН,
 ИЯФ СО РАН, ИЛ СО РАН, ИПА СО РАН, ИСИЭЖ СО РАН, ИХБФМ СО РАН,
 СИФИБР СО РАН, ФИЦ ИЦИГ СО РАН, ЦСБС СО РАН,
 ИТИЛ СО РАН, ИТПМ
 СО РАН, ИТ СО РАН, ИФПМ СО РАН, ФИЦ КНЦ СО РАН
- Университеты Сибирского региона НГУ, НГТУ, ТГУ, ТПУ, АГУ, КФГУ и др.

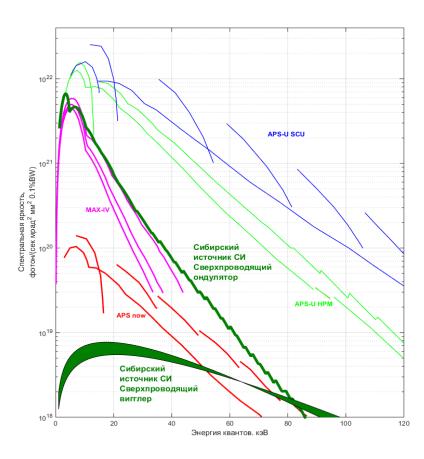
ОПЫТ ИЯФ


Производство ускорительных элементов и систем

ИЯФ СО РАН

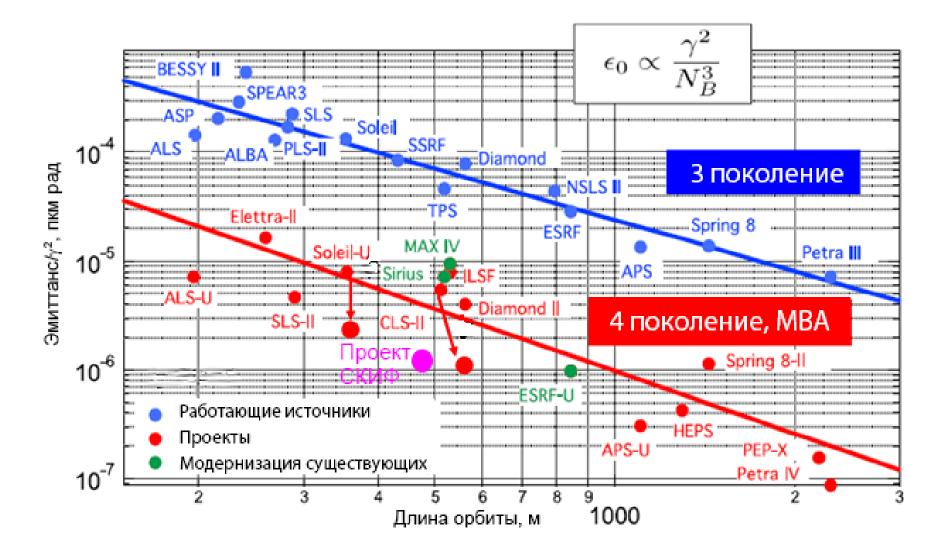
Технологии производства, большой опыт создания укорительных элементов:

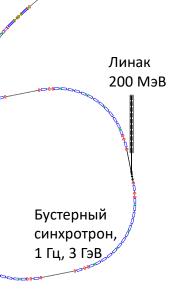

- Элементы магнитной системы (дипольные магниты, квадрупольные и секступольные линзы и др.)
- Устройства для генерации СИ (вигглеры и ондуляторы включая сверхпроводящие)
- Вакуумные и криогенные системы
- ВЧ генераторы, волноводы и резонаторы
- Электронные системы для диагностики и управления


Опыт разработки, создания и запуска больших ускорительных систем и комплексов

Выбор основных параметров источника

	Среднемасштабный	Large scale project	
	вариант		
Энергия	3 ГэВ	5 — 6 ГэВ	
Периметр	300 – 500 м	1 – 1.5 км	
Горизонтальный	300 – 600 пкм∙рад	80 – 160 pm·rad	
равновесный			
периметр			
Примерная стоимость	20– 40 млрд. руб.	80 - 150 млрд. руб	
реализации			
Примеры	MAX-IV	ESRF-II, APS-U,	
		SPring-8-U, HEPS	

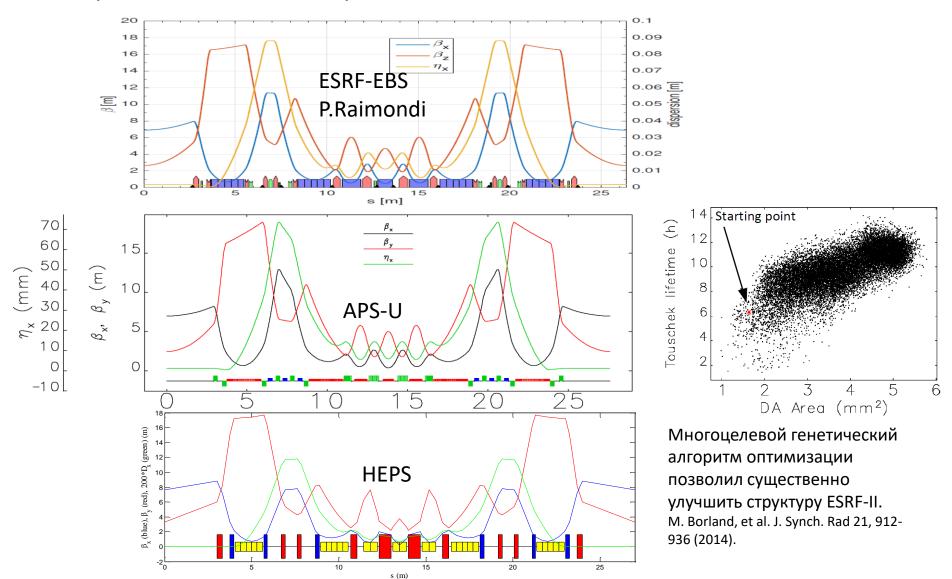




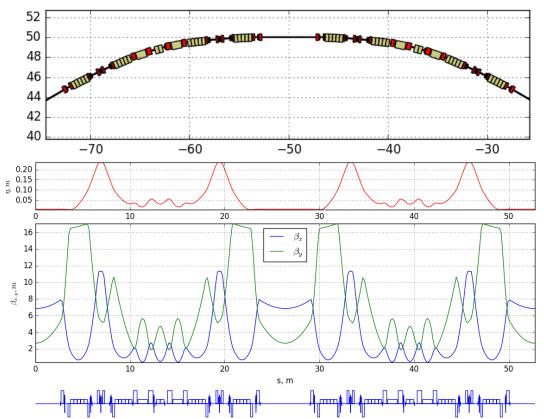
Стратегия создания проекта

Единая государственная программа развития источников СИ в России

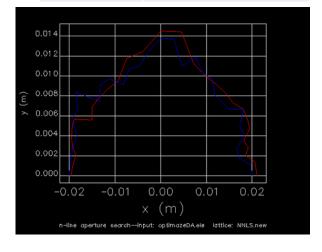
- 1. Сибирский источник СИ (3 ГэВ, 470 м)
- 2. Источник СИ четвертого поколения (Курчатовский институт, г. Протвино (?), 6 ГэВ, 1.3 км)
- 3. Дальневосточный источник СИ (г. Владивосток, о. Русский (?))
- Разработка оптимальной и масштабируемой магнитной структуры (ячейки)
- Унификация основных магнитных элементов (квадрупольных и секступольных линз, корректоров)
- Единый подход для конструирования и производства отличающихся элементов (дипольные магниты, дипольные вакуумные камеры, гирдеры)
- Единообразие ключевых систем (ВЧ, система питания, диагностика и управление, вакуумная система, устройства генерации СИ, каналы вывода СИ и др.)
- Отработка ключевых технологий проектирования и производства на изделиях для Сибирского источника СИ, прототипирование ключевых элементов

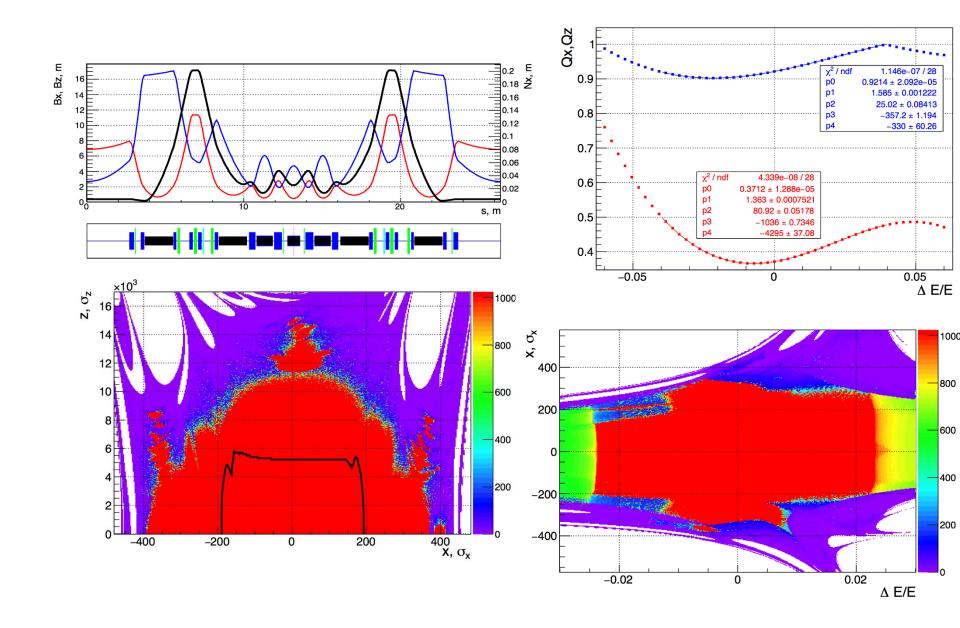


Основное кольцо, E=3 ГэВ, I_e =400 мА, П=465 м, ϵ_x =200 пкм \cdot рад


Энергия	3 ГэВ
Ток в пучке	До 400 мА (1.5 мА в каждом сгустке)
Магнитная структура	Гибридный мульибенд- ахромат (7 магнитов в ячейке)
Эмиттанс пучка	200 пкм рад
Тип инжекции	На полной энергии
Длина орбиты	~ 470 m
Генераторы СИ	15 вигглеров или ондуляторов
вч	180 MHz

Перспективная ячейка, диполи с продольной вариацией поля


Предлагаемая ячейка источника на основе ячейки для ESRF-EBS


Іополнительная оптимизация

- Увеличение жесткости основных магнитов
- Упрощение конструкции основных магнитов (отказ от продольной вариации поля)
- Оптимизация основных параметров с учетом IBS

П	369 m
Е	3 GeV
$\epsilon_{_{\chi}}$	398.3 pkm rad
v_x/v_y	33.37114 / 11.92145
(dv_x / dv_y)	-63.45 / -34.83
dp	
C_x / C_y	+0.7 / +0.7
$J_x/J_y/J_s$	1.512 / 1 / 1.478
δρ/ρ	7.1716 10 ⁻⁴
$\tau_x/\tau_y/\tau_s$	13.1 / 19.7 / 13.2 ms
U_0	0.379 MeV
N_{sp}	14

Динамическая апертура и акцептанс

Магнитные элементы основного кольца

Тип элемента	Количество семейства	Основные параметры	Вид
Магниты с вариацией поля	72 2	L=1.56 м В _{max} =0.55 Тл	
Диполь — квадруполь	54 2	L=1.03 м G=18 Тл/м B=0.5 Тл	
Квадруполи длинные	72 2	L=0.484 m G=44.65 Тл/м	
Квадруполи	180 5	L=0.212 m G=22 Тл/м	
Секступоли	169 4	L=0.083 м G_2 =890 Тл/м ²	
Октуполи	36 1	L=0.05 м G_3 =40000 Тл/м ³	
Корректоры	96	L=0.1 м B _{max} =0.1 Тл	

ВЧ система. 350 или 180 МГц?

В настоящий момент принято решение по рабочей частоте 180 МГЦ для ослабления эффектов внутрипучкового рассеяния и уменьшения времени жизни за счет естественного удлинения сгустка.

Предполагается использовать две пары резонаторов с общей нагрузкой для подавления высших мод. Детальный анализ запланирован на стадии концептуального проектирования.

Параметр		Значение	Размерность
Энергия электронов	E	3	ГэВ
Номинальный/максимальный ток пучка	I _b	400/400	мА
Потери на СИ в дипольных магнитах	U _{dipole}	0.3	МэВ/об.
Максимальные потери на СИ во вставных	U _{ID}	0.623	МэВ/об.
устройствах			
Полные максимальные потери на СИ	U_{max}	0.923	МэВ/об.
Коэффициент уплотнения орбит	α	4.37E-4	
Частота ВЧ системы	f_{rf}	180	МГц
Кратность ВЧ	h	550	
Номинальное/максимальное ускоряющее ВЧ	V_{rf}	2.0/2.0	MB
напряжение			
Синхротронная частота (для V _{rf max})	f_S	2.323	кГц
Контроль высших мод		Сильное	
		подавление	
		высших мод	
Число резонаторов	N_{cav}	4	

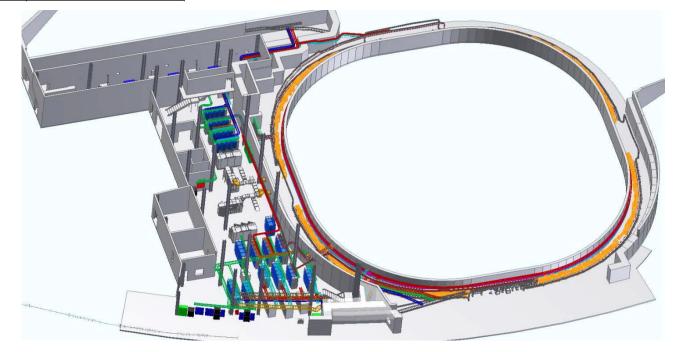
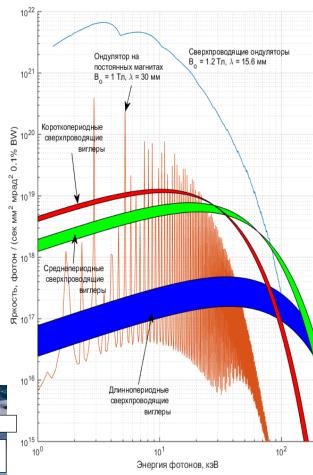

Бустерный синхротрон

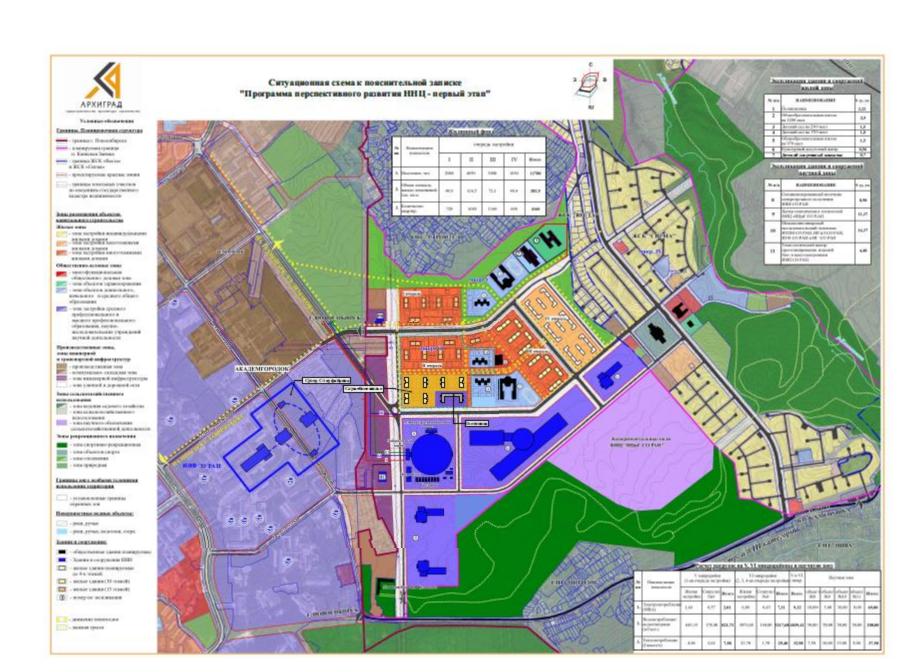
Table 4.1. General Booster Specifications

Circumference	158.4 m
Super-Periodicity	4
Operating time per year	6000 hr
Unscheduled Downtime	0.4% (24 hr per year)
Repetition rate	1 Hz (2 Hz)
RF frequency	499.68 MHz ± 10kHz
RF voltage	200V - 1.2 MV
RF Amplitude and phase jitter at 1.2 MV	$\pm 1\%$ and $\pm 1^\circ$
Max RF power	72 kW

NSLS-II Buster

Устройства генерации излучений


Тип устройства	Поле, Тл	Период, мм	Количество периодов	Особенности	10 ²²	
Вигглер длиннопериодный	7.5 – 7.0	200 – 140	15 – 20	Непрерывный спектр	10 ²¹	Ондулятор на постоянных магнитах ${\sf B}_{\sf o}$ = 1 Tn, λ = 30 мм
Вигглер среднепериодный	4.2 – 3.5	60 – 48	50 – 60	Непрерывный спектр	∭ 10 ²⁰	Короткопериодные сверхпроводящие
Вигглер короткопериодный	2.2 – 2.0	34 – 30	80 – 100	Непрерывный спектр	ад ² 0.1%	виглеры
Сверхпроводящий ондулятор	1.2	15.6	200	Дискретный спектр	ж мм ² мр ²	
Ондулятор на постоянных магнитах	1	30	100	Механическая перестройка спектра	фотон / (сек мм ²	Среднепериодные
Вакуумный ондулятор	1.5	20	150	Малый магнитный зазор (до 4 мм)	Яркость, ф	сверхпроводящие виглеры
Apple-II ондулятор	0.8	30	100	Переключаемая поляризация (линейная- циркулярная)	10 ¹⁶	
					Neutral pois 10 ¹⁵ Active 10	Длиннопериодные сверхпроводящие виглеры


allov frame

Сверхпроводящий 72полюсный дигглер с полем 3Т для источника СИ ANKA в Карлсруэ

Прототип ондулятора для XFEL, 2014

Станции первой очереди

- Станция сканирующего микроанализа;
- Станция структурной диагностики;
- Станция исследования быстропротекающих процессов;
- Станция XAFS-спектроскопии и магнитного дихроизма;
- Станция рентгеновской фазоконтрастной микроскопии и микротомографии;
- Станция мягкой рентгеновской спектроскопии и рефлектометрии.

Новый источник синхротронного излучения для Сибирского региона

Основные параметры

Параметр	Величина
Энергия	3 ГэВ
Количество станций	30
Периметр источника	470 метров

Для кого

Более 50 научных организаций СО РАН, УрО РАН, ДвО РАН		
Более 10 ВУЗов		
Промышленность:	Химическая, энергетика, машиностроение и металлообработка, микробиологическая	

Кто

Рабочих мест:	300 (100 — нс)
Пользователе (в год)	Более 10000

Этапы и стоимость

Этапы	Сроки	Стоимость
1-я очередь	7 лет	30 млрд. руб.
2-я очередь	5 лет	2 млрд. руб. ежегодно

Организации-пользователи

ИК СО РАН, ИГМ СО РАН, ИГиЛ СО РАН, ИНХ СО РАН, ИХТТМ СО РАН и другие – более 50 организаций

ВУЗы: НГУ, НГТУ, ТПУ, АГУ, КФГУ — более 10 ВУЗов **Мощный импульс** для развития промышленной и научной инфраструктуры региона

- **+ новые материалы:** Na_2He (>100 ГПа), наноалмазы, катализаторы, механокомпозиты
- **+ новые свойства:** высокотемпературная (200 K) сверхпроводимость в H_2 S при 150 ГПа
- + новые лекарства: Витридинол, целевая доставка
- + новые технологии: синтез и диагностика нано- и гибридных материалов, молекулярно-биологичес-кие процессы, модифицированные поверхности
- **+ энергетика будущего:** комплексные исследования материалов термоядерных реакторов
- + импортозамещение, отсутствие аналогов в России и многоемногое другое...